Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Black spruce (Picea mariana) seed availability and viability in boreal forests after large wildfiresAbstract Key message Black spruce ( Picea mariana (Mill.) B.S.P.) has historically self-replaced following wildfire, but recent evidence suggests that this is changing. One factor could be negative impacts of intensifying fire activity on black spruce seed rain. We investigated this by measuring black spruce seed rain and seedling establishment. Our results suggest that increases in fire activity could reduce seed rain meaning reductions in black spruce establishment. Context Black spruce is an important conifer in boreal North America that develops a semi-serotinous, aerial seedbank and releases a pulse of seeds after fire. Variation in postfire seed rain has important consequences for black spruce regeneration and stand composition. Aims We explore the possible effects of changes in fire regime on the abundance and viability of black spruce seeds following a very large wildfire season in the Northwest Territories, Canada (NWT). Methods We measured postfire seed rain over 2 years at 25 black spruce-dominated sites and evaluated drivers of stand characteristics and environmental conditions on total black spruce seed rain and viability. Results We found a positive relationship between black spruce basal area and total seed rain. However, at high basal areas, this increasing rate of seed rain was not maintained.more »Free, publicly-accessible full text available December 1, 2024
-
Free, publicly-accessible full text available April 1, 2024
-
Vast amounts of organic carbon are stored in Arctic soils. Much of this is in the form of peat, a layer of decomposing plant matter. Arctic wildfires release this carbon to the atmosphere as carbon dioxide (CO 2 ) ( 1 ) and contribute to global warming. This creates a feedback loop in which accelerated Arctic warming ( 2 ) dries peatland soils, which increases the likelihood of bigger, more frequent wildfires in the Arctic and releases more CO 2 , which further contributes to warming. Although this feedback mechanism is qualitatively understood, there remain uncertainties about its details. On page 532 of this issue, Descals et al. ( 3 ) analyze data from the 2019 and 2020 wildfire seasons in the Siberian Arctic and predict the extent of carbon-rich soils likely to burn in the area with future warming. Critically, they suggest that even minor increases in temperature above certain thresholds may promote increasingly larger wildfires.Free, publicly-accessible full text available November 4, 2023
-
Free, publicly-accessible full text available June 1, 2023
-
In boreal North America, much of the landscape is covered by fire-adapted forests dominated by serotinous conifers. For these forests, reductions in fire return interval could limit reproductive success, owing to insufficient time for stands to reach reproductive maturity i.e., to initiate cone production. Improved understanding of the drivers of reproductive maturity can provide important information about the capacity of these forests to self-replace following fire. Here, we assessed the drivers of reproductive maturity in two dominant and widespread conifers, semi-serotinous black spruce and serotinous jack pine. Presence or absence of female cones were recorded in approximately 15,000 individuals within old and recently burned stands in two distinct ecozones of the Northwest Territories (NWT), Canada. Our results show that reproductive maturity was triggered by a minimum tree size threshold rather than an age threshold, with trees reaching reproductive maturity at smaller sizes where environmental conditions were more stressful. The number of reproductive trees per plot increased with stem density, basal area, and at higher latitudes (colder locations). The harsh climatic conditions present at these higher latitudes, however, limited the recruitment of jack pine at the treeline ecotone. The number of reproductive black spruce trees increased with deeper soils, whereas themore »Free, publicly-accessible full text available July 22, 2023
-
Free, publicly-accessible full text available July 1, 2023
-
Abstract Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species’ environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce ( Picea mariana ) to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada. We combined surveys of naturally regenerating seedlings at 219 burned plots with experimental manipulations of ecological legacies via seed addition of four tree species and vertebrate exclosures to limit granivory and herbivory at 30 plots varying in moisture and fire severity. Black spruce recovery was greatest where it dominated pre-fire, at wet sites with deep residual soil organic layers, and fire conditions of low soil or canopy combustion and longer return intervals. Experimental addition of seed indicated all species were seed-limited, emphasizing the importance of propagule legacies. Black spruce and birch ( Betula papyrifera ) recruitment were enhanced with vertebrate exclusion. Our combination of observational and experimental studies demonstrates black spruce is vulnerable to effects of increased fire activity that erode ecological legacies. Moreover, blackmore »Free, publicly-accessible full text available June 29, 2023
-
Free, publicly-accessible full text available May 1, 2023
-
Abstract Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climatemore »