We introduce a novel notion of perception contracts to reason about the safety of controllers that interact with an environment using neural perception. Perception contracts capture errors in ground-truth estimations that preserve invariants when systems act upon them. We develop a theory of perception contracts and design symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms and evaluate synthesized perception contracts for two realistic vision-based control systems, a lane tracking system for an electric vehicle and an agricultural robot that follows crop rows. Our evaluation shows that our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test images obtained during runtime monitoring of the systems.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
We present an approach to learn contracts for object-oriented programs where guarantees of correctness of the contracts are made with respect to a test generator. Our contract synthesis approach is based on a novel notion of tight contracts and an online learning algorithm that works in tandem with a test generator to synthesize tight contracts. We implement our approach in a tool called Precis and evaluate it on a suite of programs written in C#, studying the safety and strength of the synthesized contracts, and compare them to those synthesized by Daikon.more » « less
-
Bierre, Amin ; Parker, David (Ed.)
-
We identify a decidable synthesis problem for a class of pro- grams of unbounded size with conditionals and iteration that work over infinite data domains. The programs in our class use uninterpreted functions and relations, and abide by a restriction called coherence that was recently identified to yield decidable verification. We formulate a powerful grammar-restricted (syntax-guided) synthesis problem for coherent uninterpreted programs, and we show the problem to be decidable, identify its precise complexity, and also study several variants of the problem.more » « less