skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Madiyar, Foram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shull, Peter J; Yu, Tzuyang; Gyekenyesi, Andrew L; Wu, H Felix (Ed.)
    Free, publicly-accessible full text available May 12, 2026
  2. Free, publicly-accessible full text available January 3, 2026
  3. Free, publicly-accessible full text available January 3, 2026
  4. Free, publicly-accessible full text available January 3, 2026
  5. Free, publicly-accessible full text available January 3, 2026
  6. Inflammatory Bowel Disease (IBD) is a chronic condition that affects approximately 1.6 million Americans. While current polyphenols for treating IBD can be expensive and cause unwanted side effects, there is an opportunity regarding a new drug/polymer formulation using silymarin and an electrospray procedure. Silymarin is a naturally occurring polyphenolic flavonoid antioxidant that has shown promising results as a pharmacological agent due to its antioxidant and hepatoprotective characteristics. This study aims to produce a drug–polymer complex named the SILS100-Electrofiber complex, using an electrospray system. The vertical set-up of the electrospray system was optimized at a 1:10 of silymarin and Eudragit® S100 polymer to enhance surface area and microfiber encapsulation. The SILS100-Electrofiber complex was evaluated using drug release kinetics via UV Spectrophotometry, Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC). Drug loading, apparent solubility, and antioxidant activity were also evaluated. The study was successful in creating fiber-like encapsulation of the silymarin drug with strand diameters ranging from 5–7 μm, with results showing greater silymarin release in Simulated Intestinal Fluid (SIF) compared to Simulated Gastric Fluid (SGF). Moving forward, this study aims to provide future insight into the formulation of drug–polymer complexes for IBD treatment and targeted drug release using electrospray and microencapsulation. 
    more » « less
  7. Additive manufacturing (AM) technology has recently seen increased utilization due to its versatility in using functional materials, offering a new pathway for next-generation conformal electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet (UV)-curable materials with enhanced piezoelectric properties necessitates the development of a tailorable process suitable for 3D printing. This paper investigates the structural, thermal, rheological, mechanical, and piezoelectric properties of a newly developed sensor resin material. The polymer resin is based on polyvinylidene fluoride (PVDF) as a matrix, mixed with constituents enabling UV curability, and boron nitride nanotubes (BNNTs) are added to form a nanocomposite resin. The results demonstrate the successful micro-scale printability of the developed polymer and nanocomposite resins using a liquid crystal display (LCD)-based 3D printer. Additionally, incorporating BNNTs into the polymer matrix enhanced the piezoelectric properties, with an increase in the voltage response by up to 50.13%. This work provides new insights for the development of 3D printable flexible sensor devices and energy harvesting systems. 
    more » « less