skip to main content

Search for: All records

Creators/Authors contains: "Maeda, Keiichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present 1.3 mm (230 GHz) observations of the recent and nearby Type II supernova, SN 2023ixf, obtained with the Submillimeter Array (SMA) at 2.6–18.6 days after explosion. The observations were obtained as part the SMA Large Program, POETS (Pursuit of Extragalactic Transients with the SMA). We do not detect any emission at the location of SN 2023ixf, with the deepest limits of L ν (230 GHz) ≲ 8.6 × 10 25 erg s −1 Hz −1 at 2.7 and 7.7 days, and L ν (230 GHz) ≲ 3.4 × 10 25 erg s −1 Hz −1 at 18.6 days. These limits are about a factor of 2 times dimmer than the millimeter emission from SN 2011dh (IIb), about 1 order of magnitude dimmer compared to SN 1993J (IIb) and SN 2018ivc (IIL), and about 30 times dimmer than the most luminous nonrelativistic SNe in the millimeter band (Type IIb/Ib/Ic). Using these limits in the context of analytical models that include synchrotron self-absorption and free–free absorption, we place constraints on the proximate circumstellar medium around the progenitor star, to a scale of ∼2 × 10 15 cm, excluding the range M ̇ ∼ few × 10 − 6 − 10 − 2 M ⊙ yr −1 (for a wind velocity, v w = 115 km s −1 , and ejecta velocity, v ej ∼ (1 − 2) × 10 4 km s −1 ). These results are consistent with an inference of the mass-loss rate based on optical spectroscopy (∼2 × 10 −2 M ⊙ yr −1 for v w = 115 km s −1 ), but are in tension with the inference from hard X-rays (∼7 × 10 −4 M ⊙ yr −1 for v w = 115 km s −1 ). This tension may be alleviated by a nonhomogeneous and confined CSM, consistent with results from high-resolution optical spectroscopy. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract SN 2018ivc is an unusual Type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope and SNe IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light-curve evolution more complicated than that of canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array. Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb–like explosion of an He star with a modest (∼0.5–1 M ⊙ ) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the “canonical” SN IIb ejecta) for which the multiwavelength emission is powered mainly by the SN–CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu, which shows a flash spectral feature. The outer CSM density, and therefore the mass-loss rate in the final ∼200 yr, is higher than that of SN 1993J by a factor of ∼5. We suggest that SN 2018ivc represents a missing link between SNe IIP and SNe IIb/Ib/Ic in the binary evolution scenario. 
    more » « less
  3. ABSTRACT A rare class of supernovae (SNe) is characterized by strong interaction between the ejecta and several solar masses of circumstellar matter (CSM) as evidenced by strong Balmer-line emission. Within the first few weeks after the explosion, they may display spectral features similar to overluminous Type Ia SNe, while at later phase their observation properties exhibit remarkable similarities with some extreme case of Type IIn SNe that show strong Balmer lines years after the explosion. We present polarimetric observations of SN 2018evt obtained by the ESO Very Large Telescope from 172 to 219 d after the estimated time of peak luminosity to study the geometry of the CSM. The non-zero continuum polarization decreases over time, suggesting that the mass-loss of the progenitor star is aspherical. The prominent H α emission can be decomposed into a broad, time-evolving component and an intermediate-width, static component. The former shows polarized signals, and it is likely to arise from a cold dense shell (CDS) within the region between the forward and reverse shocks. The latter is significantly unpolarized, and it is likely to arise from shocked, fragmented gas clouds in the H-rich CSM. We infer that SN 2018evt exploded inside a massive and aspherical circumstellar cloud. The symmetry axes of the CSM and the SN appear to be similar. SN 2018evt shows observational properties common to events that display strong interaction between the ejecta and CSM, implying that they share similar circumstellar configurations. Our preliminary estimate also suggests that the circumstellar environment of SN 2018evt has been significantly enriched at a rate of ∼0.1 M⊙ yr−1 over a period of >100 yr. 
    more » « less
  4. Abstract

    Few published ultraviolet (UV) spectra exist for stripped-envelope supernovae and none to date for broad-lined Type Ic supernovae (SNe Ic-bl). These objects have extremely high ejecta velocities and are the only supernova type directly linked to gamma-ray bursts (GRBs). Here we present two epochs of HST/STIS spectra of the SN Ic-bl 2014ad, the first UV spectra for this class. We supplement this with 26 new epochs of ground-based optical spectra, augmenting a rich spectral time series. The UV spectra do not show strong features and are consistent with broadened versions of other SN Ic spectra observed in the UV. We measure Feii5169 Å velocities and show that SN 2014ad has even higher ejecta velocities than most SNe Ic both with and without observed GRBs. We construct models of the SN 2014ad UV+optical spectra usingtardis, a 1D Monte Carlo radiative-transfer spectral synthesis code. The models fit the data well at multiple epochs in the optical but underestimate the flux in the UV, likely due to simplifying assumptions. We find that high densities at high velocities are needed to reproduce the spectra, with ∼3Mof material atv> 22,000 km s−1, assuming spherical symmetry. Our nebular line fits suggest a steep density profile at low velocities. Together, these results imply a higher total ejecta mass than estimated from previous light-curve analysis and expected from theory. This may be reconciled by a flattening of the density profile at low velocity and extra emission near the center of the ejecta.

    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3–14μm. This spectrum unveils the previously unobserved 2.5−5μm region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2μm and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ariii] 8.99μm line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models.

    more » « less
  8. null (Ed.)