skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Magana, Alejandra_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThis study posits that scaffolded team-based computational modeling and simulation projects can support model-based learning that can result in evidence of representational competence and regulatory skills. The study involved 116 students from a second-year thermodynamics undergraduate course organized into 24 teams, who worked on three two-week-long team-based computational modeling and simulation projects and reflected upon their experience. ResultsResults characterized different levels of engagement with computational model-based learning in the form of problem formulation and model planning, implementation and use of the computational model, evaluation, and interpretation of the outputs of the model, as well as reflection on the process. Results report on students’ levels of representational competence as related to the computational model, meaning-making of the underlying code of the computational model, graphical representations generated by the model, and explanations and interpretations of the output representations. Results also described regulatory skills as challenges and strategies related to programming skills, challenges and strategies related to meaning-making skills for understanding and connecting the science to the code and the results, and challenges and strategies related to process management mainly focused on project management skills. ConclusionCharacterizing dimensions of computational model-based reasoning provides insights that showcase students’ learning, benefits, and challenges when engaging in team-based computational modeling and simulation projects. This study also contributes to evidence-based scaffolding strategies that can support undergraduate students' engagement in the context of computational modeling and simulation. 
    more » « less
  2. Abstract BackgroundEffectively facilitating teamwork experiences, particularly in the context of large-size courses, is difficult to implement. This study seeks to address the challenges of implementing effective teamwork experiences in large courses. This study integrated teamwork pedagogy to facilitate a semester-long project in the context of a large-size class comprising 118 students organized into 26 teams. The data for this study were collected from two online teamwork sessions when teams collaborated and self-recorded during the in-class time. The video recordings were qualitatively analyzed to identify patterns in team dynamics processes through visualizations. The study aims to provide insights into the different ways team members engaged in team dynamics processes during different phases of the semester. ResultsFindings suggest that members of teams were mostly active and passive during meetings and less constructive and interactive in their engagement. Team members mainly engaged in communication, team orientation, and feedback behaviors. Over time, team members' interactions with one another remained about the same, with feedback behaviors tending to diminish and coordination behaviors staying about the same or slightly increasing over time. ConclusionThe implications of this study extend to both practice and theory. Practically, combining cooperative learning and scrum practices enabled a blend of collaborative and cooperative work, which suggests providing teams with tools and structures to coordinate teamwork processes and promote interaction among team members. From a theoretical perspective, this study contributes to the understanding of temporal aspects of teamwork dynamics by examining how team interactions evolve during working sessions at different points in time. Overall, this research provides valuable insights for educators, practitioners, and researchers aiming to enhance teamwork experiences in large courses, particularly in software development disciplines. 
    more » « less