skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Magdon-Ismail, Malik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 6, 2026
  2. We present efficient algorithms to learn the pa- rameters governing the dynamics of networked agents, given equilibrium steady state data. A key feature of our methods is the ability to learn without seeing the dynamics, using only the steady states. A key to the efficiency of our approach is the use of mean-field approximations to tune the parameters within a nonlinear least squares (NLS) framework. Our results on real networks demonstrate the accuracy of our approach in two ways. Using the learned parameters, we can: (i) Recover more accurate estimates of the true steady states when the observed steady states are noisy. (ii) Predict evolution to new equilibrium steady states after perturbations to the network topology. 
    more » « less