skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Maginn, Edward J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 8, 2025
  2. Free, publicly-accessible full text available September 19, 2024
  3. Gardas, Ramesh L. (Ed.)
    The solvation structure and transport properties of Li+ in ionic liquid (IL) electrolytes based on n-methyl-n-butylpyrrolidinium cyano(trifluoromethanesulfonyl)imide [PYR14][CTFSI] and [Li][CTFSI] (0 ≤ xLi ≤ 0.7) were studied by Raman and Nuclear Magnetic Resonance (NMR) diffusometry, and molecular dynamics (MD) simulations. At xLi < 0.3, Li+ coordination is dominated by the cyano group. As xLi is increased, free cyano-sites become limited, resulting in increased coordination via the sulfonyl group. The 1:1 mixture of the symmetric anions bis(trifluoromethanesulfonyl)imide ([TFSI]) and dicyanamide ([DCA]) results in similar physical properties as the IL with [CTFSI]. However, anion asymmetry is shown to increase Li-salt solubility and promote Li+ transference. The lifetimes of Li+-cyano coordination for [CTFSI] are calculated to be shorter than those for [DCA], indicating that the competition from the sulfonyl group weakens its solvation with Li+. This resulted in higher Li+ transference for the electrolyte with [CTFSI]. In relation to the utility of these electrolytes in energy storage, the Li–LiFePO4 half cells assembled with IL electrolyte (xLi = 0.3, 0.5, and 0.7) demonstrated a nominal capacity of 140 mAh/g at 0.1C rate and 90 °C where the cell with xLi = 0.7 IL electrolyte demonstrated 61% capacity retention after 100 cycles and superior rate capability owing to increased electrochemical stability. 
    more » « less