skip to main content

Search for: All records

Creators/Authors contains: "Magliocca, Nicholas R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite more than 40 years of counterdrug interdiction efforts in the Western Hemisphere, cocaine trafficking, or ‘narco-trafficking’, networks continue to evolve and increase their global reach. Counterdrug interdiction continues to fall short of performance targets due to the adaptability of narco-trafficking networks and spatially complex constraints on interdiction operations (e.g., resources, jurisdictional). Due to these dynamics, current modeling approaches offer limited strategic insights into time-varying, spatially optimal allocation of counterdrug interdiction assets. This study presents coupled agent-based and spatial optimization models to investigate the co-evolution of counterdrug interdiction deployment and narco-trafficking networks’ adaptive responses. Increased spatially optimized interdiction assets were found to increase seizure volumes. However, the value per seized shipment concurrently decreased and the number of active nodes increased or was unchanged. Narco-trafficking networks adaptively responded to increased interdiction pressure by spatially diversifying routes and dispersing shipment volumes. Thus, increased interdiction pressure had the unintended effect of expanding the spatial footprint of narcotrafficking networks. This coupled modeling approach enabled the study of narco-trafficking network evolution while being subjected to varying interdiction pressure as a spatially complex adaptive system. Capturing such co-evolution dynamics is essential for simulating traffickers’ realistic adaptive responses to a wide range of interdiction scenarios.
    Free, publicly-accessible full text available September 14, 2023
  2. Rates of poverty and economic inequality in rural Alabama are among the nation's highest and increasing agricultural productivity can provide a needed boost to these communities. The transition from rain-fed to irrigation-fed (RFtoIF) agriculture has significantly increased farm productivity and profitability elsewhere in the United States. Despite this potential to enhance stability and resilience in rural economies, irrigated cropland accounts for only 5% of Alabama's total cropland as numerous barriers remain to irrigation adoption. To encourage RFtoIF transition, it is imperative to identify the challenges faced by individual farmers at farm, community, and state levels. This study presents a multi-level mixed effects survival analysis to identify the physiographic, socioecological, and economic factors that influence the location and timing of irrigation adoption. We integrate spatiotemporal cropland and climatological data with field-verified locations of center-pivot irrigation systems, local physiographic characteristics, and parcel-level surface water access and average well depth. Access to surface water, costs to access groundwater, and soil characteristics were generally important influences in all regions, but regions were differentiated by the extent to which new irrigation was more responsive to social influences vs. precipitation and price trends. Our findings also highlighted the diversity of farming conditions across the state, whichmore »suggested that diverse policy tools are needed that acknowledge the varying motivations and constraints faced by Alabama's farmers.« less
    Free, publicly-accessible full text available July 7, 2023
  3. Free, publicly-accessible full text available May 1, 2023
  4. The nexus of food, energy, and water systems (FEWS) has become a salient research topic, as well as a pressing societal and policy challenge. Computational modeling is a key tool in addressing these challenges, and FEWS modeling as a subfield is now established. However, social dimensions of FEWS nexus issues, such as individual or social learning, technology adoption decisions, and adaptive behaviors, remain relatively underdeveloped in FEWS modeling and research. Agent-based models (ABMs) have received increasing usage recently in efforts to better represent and integrate human behavior into FEWS research. A systematic review identified 29 articles in which at least two food, energy, or water sectors were explicitly considered with an ABM and/or ABM-coupled modeling approach. Agent decision-making and behavior ranged from reactive to active, motivated by primarily economic objectives to multi-criteria in nature, and implemented with individual-based to highly aggregated entities. However, a significant proportion of models did not contain agent interactions, or did not base agent decision-making on existing behavioral theories. Model design choices imposed by data limitations, structural requirements for coupling with other simulation models, or spatial and/or temporal scales of application resulted in agent representations lacking explicit decision-making processes or social interactions. In contrast, several methodologicalmore »innovations were also noted, which were catalyzed by the challenges associated with developing multi-scale, cross-sector models. Several avenues for future research with ABMs in FEWS research are suggested based on these findings. The reviewed ABM applications represent progress, yet many opportunities for more behaviorally rich agent-based modeling in the FEWS context remain.« less
  5. Counterdrug interdiction efforts designed to seize or disrupt cocaine shipments between South American source zones and US markets remain a core US “supply side” drug policy and national security strategy. However, despite a long history of US-led interdiction efforts in the Western Hemisphere, cocaine movements to the United States through Central America, or “narco-trafficking,” continue to rise. Here, we developed a spatially explicit agent-based model (ABM), called “NarcoLogic,” of narco-trafficker operational decision making in response to interdiction forces to investigate the root causes of interdiction ineffectiveness across space and time. The central premise tested was that spatial proliferation and resiliency of narco-trafficking are not a consequence of ineffective interdiction, but rather part and natural consequence of interdiction itself. Model development relied on multiple theoretical perspectives, empirical studies, media reports, and the authors’ own years of field research in the region. Parameterization and validation used the best available, authoritative data source for illicit cocaine flows. Despite inherently biased, unreliable, and/or incomplete data of a clandestine phenomenon, the model compellingly reproduced the “cat-and-mouse” dynamic between narco-traffickers and interdiction forces others have qualitatively described. The model produced qualitatively accurate and quantitatively realistic spatial and temporal patterns of cocaine trafficking in response to interdictionmore »events. The NarcoLogic model offers a much-needed, evidence-based tool for the robust assessment of different drug policy scenarios, and their likely impact on trafficker behavior and the many collateral damages associated with the militarized war on drugs.

    « less