skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Magnoli, Susan_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Restoration of soil microbial communities, and microbial mutualists in particular, is increasingly recognized as critical for the successful restoration of grassland plant communities. Although the positive effects of restoring arbuscular mycorrhizal fungi during the restoration of these systems have been well documented, less is known about the potential importance of nitrogen‐fixing rhizobium bacteria, which associate with legume plant species that comprise an essential part of grassland plant communities, to restoration outcomes. In a series of greenhouse and field experiments, we examined the effects of disturbance on rhizobium communities, how plant interactions with these mutualists changed with disturbance, and whether rhizobia can be used to enhance the establishment of desirable native legume species in degraded grasslands. We found that agricultural disturbance alters rhizobium communities in ways that affect the growth and survival of legume species. Native legume species derived more benefit from interacting with rhizobia than did non‐native species, regardless of rhizobia disturbance history. Additionally, slow‐growing, long‐lived legume species received more benefits from associating with rhizobia from undisturbed native grasslands than from associating with rhizobia from more disturbed sites. Together, this suggests that native rhizobia may be key to enhancing the restoration success of legumes in disturbed habitats. 
    more » « less
  2. Abstract When populations colonize new habitats, they are likely to experience novel environmental conditions, and as a consequence may experience strong selection. While selection and the resulting evolutionary responses may have important implications for establishment success in colonizing populations, few studies have estimated selection in such scenarios. Here we examined evidence of selection in recently established plant populations in two prairie restorations in close proximity (<15 km apart) using two approaches: (1) we tested for evidence of past selection on a suite of traits in twoChamaecrista fasciculatapopulations by comparing the restored populations to each other and their shared source population in common gardens to quantify evolutionary responses and (2) we measured selection in the field. We found evidence of past selection on flowering time, specific leaf area, and root nodule production in one of the populations, but detected contemporary selection on only one trait (plant height). Our findings demonstrate that while selection can occur in colonizing populations, resulting in significant trait differences between restored populations in fewer than six generations, evolutionary responses differ across even nearby populations sown with the same source population. Because contemporary measures of selection differed from evolutionary responses to past selection, our findings also suggest that selection likely differs over the early stages of succession that characterize young prairies. 
    more » « less