skip to main content

Search for: All records

Creators/Authors contains: "Magnusdottir, Gudrun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We develop a hierarchy of simplified ocean models for coupled ocean, atmosphere, and sea ice climate simulations using the Community Earth System Model version 1 (CESM1). The hierarchy has four members: a slab ocean model, a mixed‐layer model (MLM) with entrainment and detrainment, an Ekman MLM, and an ocean general circulation model (OGCM). Flux corrections of heat and salt are applied to the simplified models ensuring that all hierarchy members have the same climatology. We diagnose the needed flux corrections from auxiliary simulations in which we restore the temperature and salinity to the daily climatology obtained from a target CESM1 simulation. The resulting three‐dimensional corrections contain the interannual variability fluxes that maintain the correct vertical gradients of temperature and salinity in the tropics. We find that the inclusion of mixed‐layer entrainment and Ekman flow produces sea surface temperature and surface air temperature fields whose means and variances are progressively more similar to those produced by the target CESM1 simulation. We illustrate the application of the hierarchy to the problem of understanding the response of the climate system to the loss of Arctic sea ice. We find that the shifts in the positions of the mid‐latitude westerly jet and of the Inter‐tropical Convergence Zone (ITCZ) in response to sea‐ice loss depend critically on upper ocean processes. Specifically, heat uptake associated with the mixed‐layer entrainment influences the shift in the westerly jet and ITCZ. Moreover, the shift of ITCZ is sensitive to the form of Ekman flow parameterization.

    more » « less
  2. Abstract

    The teleconnection between the Quasi‐Biennial Oscillation (QBO) and the Arctic polar vortex is investigated using Coupled Model Intercomparison Project 6 (CMIP6) models. Output from 14 CMIP6 models is compared with reanalysis, three experiments with prescribed QBOs, one of which has no free polar stratospheric variability, and transient experiments in which a QBO is prescribed in runs previously devoid of a QBO. Each CMIP6 model underestimates the Holton‐Tan effect (HTE), the weakening of the polar vortex expected with QBO easterlies in the tropical lower stratosphere. To establish why, potential vorticity maps are used to investigate longitudinal variations in the teleconnection. Prescribing easterly QBO in the transient experiments promotes more high‐latitude planetary wave breaking by influencing the mid‐latitude stratospheric circulation, particularly over Asia. CMIP6 models that better simulate this response over Asia better simulate the HTE. These models also have stronger 10 hPa QBO westerlies.

    more » « less
  3. null (Ed.)
  4. Abstract

    The teleconnection between the Quasi‐Biennial Oscillation (QBO) and the boreal winter polar vortex, the Holton–Tan effect, is analyzed in the Whole Atmosphere Community Climate Model (WACCM) with a focus on how stationary wave propagation varies by QBO phase. These signals are difficult to isolate in reanalyses because of large internal variability in short observational records, especially when decomposing the data by QBO phase. A 1,500‐year ensemble is leveraged by defining the QBO index at five different isobars between 10 and 70 hPa. The Holton–Tan effect is a robust part of the atmospheric response to the QBO in WACCM with warming of the polar stratosphere during easterly QBO (QBOE). A nudging technique is used to reduce polar stratospheric variability in one simulation. This enables isolation of the impact of the QBO on the atmosphere in the absence of a polar stratospheric response to the QBO: referred to as the “direct effect” and the polar stratospheric response, “indirect effect.” This simulation reveals that the polar stratospheric warming during QBOE pushes the tropospheric jet equatorward, opposing the poleward shift of the jet by the QBOE, especially over the North Pacific. The Holton–Tan effect varies over longitude. The QBO induces stronger planetary wave forcing to the mean flow in the extratropical lower stratosphere between Indonesia and Alaska. The North Pacific polar stratosphere responds to this before other longitudes. What follows is a shift in the position of the polar vortex toward Eurasia (North America) during easterly (westerly) QBO. This initiates downstream planetary wave responses over North America, the North Atlantic, and Siberia. This spatiotemporal evolution is found in transient simulations in which QBO nudging is “switched on.” The North Pacific lower stratosphere seems more intrinsically linked to the QBO while other longitudes appear more dependent on the mutual interaction between the QBO and polar stratosphere.

    more » « less
  5. Abstract

    The effect of future Arctic amplification (AA) on the extratropical atmospheric circulation remains unclear in modeling studies. Using a collection of coordinated atmospheric and coupled global climate model perturbation experiments, we find an emergent relationship between the high‐latitude 1,000–500 hPa thickness response and an enhancement of the Siberian High in winter. This wave number‐1‐like sea level pressure anomaly pattern is linked to an equatorward shift of the eddy‐driven jet and a dynamical cooling response in eastern Asia. Additional simulations, where AA is imposed directly into the model domain by nudging, demonstrate how the sea ice forcing is insufficient by itself to capture the vertical extent of the warming and by extension the amplitude of the response in the Siberian High. This study demonstrates the importance of the vertical extent of the tropospheric warming over the polar cap in revealing the “warm Arctic, cold Siberia” anomaly pattern in future projections.

    more » « less
  6. Abstract

    Recent modeling studies have shown an important role for stratosphere‐troposphere coupling in the large‐scale atmospheric response to Arctic sea ice loss. Evidence is growing that the Quasi‐biennial Oscillation (QBO) can contribute to or even mitigate teleconnections from surface forcing. Here, the influence of QBO phase on the atmospheric response to projected Arctic sea ice loss is examined using an atmospheric general circulation model with a well‐resolved stratosphere and a QBO prescribed from observations. The role of the QBO is determined by compositing seasons with easterly phase (QBO‐E) separately from seasons with westerly phase (QBO‐W). In response to the sea ice forcing in early winter, the polar vortex during QBO‐E weakens with strong stratosphere‐troposphere wave‐1 coupling and a negative Northern Annular Mode‐type response. At the surface, this results in more severe Siberian cold spells. For QBO‐W, the polar vortex strengthens in response to the sea ice forcing.

    more » « less
  7. Abstract

    Given uncertainty in the processes involved in polar amplification, elucidating the role of poleward heat and moisture transport is crucial. The Polar Amplification Model Intercomparison Project (PAMIP) permits robust separation of the effects of sea ice loss from sea surface warming under climate change. We utilize a moist isentropic circulation framework that accounts for moisture transport, condensation, and eddy transport, in order to analyze the circulation connecting the mid‐latitudes and the Arctic. In PAMIP's atmospheric general circulation model experiments, prescribed sea ice loss reduces poleward heat transport (PHT) by warming the returning moist isentropic circulation at high latitudes, while prescribed warming of the ocean surface increases PHT by strengthening the moist isentropic circulation. Inter‐model spread of PHT into the Arctic reflects the tug‐of‐war between sea‐ice and surface‐warming effects.

    more » « less