skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maguire, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes. 
    more » « less
  2. null (Ed.)
    The late Quaternary fossil record provides crucial data that demonstrate how organisms respond to climate change. These records have been used to great effect, demonstrating that no-analog communities frequently occur during periods of no-analog climate, and that taxa demonstrate individualistic responses to change. However, our efforts to reconstruct biotic responses to environmental change are frequently hampered by inconsistent sampling and differential preservation of fossil taxa. We leveraged occupancy modeling methods and the fossil pollen record across eastern North America to identify circumstances under which occupancy modeling improves our ability to estimate relative abundance in four pollen taxa (Cornus, Fagus, Picea, and Pinus) through time (15 kya to present) and to identify localities where data are unreliable reflections of the local community. We found that integrating observed pollen abundance and detectability improves model performance. Low genus richness and large basin area were consistently important determinants of low detection. Our occupancy models were most informative for taxa with high enough variation in observed pollen abundance for models to be adequately calibrated. We combined occupancy model estimates of pollen abundance and detectability with a Getis-Ord statistical approach to identify spatial clusters of high or low detectability, identifying regions where a taxon’s pollen is more (or less) reliable. This work will advance the integration of ecological and paleontological sciences by allowing us to better identify whether a pollen taxon is truly absent from a fossil site or if it has simply gone undetected, allowing us to produce more robust paleoecological models. This approach will bolster our ability to identify the responses of plant communities to past climatic and anthropogenic change so that we can improve our predictions of future responses. 
    more » « less
  3. ABSTRACT Samples of young Type Ia supernovae have shown ‘early excess’ emission in a few cases. Similar excesses are predicted by some explosion and progenitor scenarios and hence can provide important clues regarding the origin of thermonuclear supernovae. They are, however, only predicted to last up to the first few days following explosion. It is therefore unclear whether such scenarios are intrinsically rare or whether the relatively small sample size simply reflects the difficulty in obtaining sufficiently early detections. To that end, we perform toy simulations covering a range of survey depths and cadences, and investigate the efficiency with which young Type Ia supernovae are recovered. As input for our simulations, we use models that broadly cover the range of predicted luminosities. Based on our simulations, we find that in a typical 3 d cadence survey, only ∼10 per cent of Type Ia supernovae would be detected early enough to rule out the presence of an excess. A 2 d cadence, however, should see this increase to ∼15 per cent. We find comparable results from more detailed simulations of the Zwicky Transient Facility surveys. Using the recovery efficiencies from these detailed simulations, we investigate the number of young Type Ia supernovae expected to be discovered assuming some fraction of the population comes from scenarios producing an excess at early times. Comparing the results of our simulations to observations, we find that the intrinsic fraction of Type Ia supernovae with early flux excesses is $$\sim 28^{+13}_{-11}{{\ \rm per\ cent}}$$. 
    more » « less
  4. ABSTRACT We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe ii] to [Fe iii] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia. 
    more » « less
  5. ABSTRACT SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a $${\sim}40\, \mathrm{M}_\odot$$ progenitor star. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present the data and analysis of SN 2018gjx, an unusual low-luminosity transient with three distinct spectroscopic phases. Phase I shows a hot blue spectrum with signatures of ionized circumstellar material (CSM), Phase II has the appearance of broad SN features, consistent with those seen in a Type IIb supernova at maximum light, and Phase III is that of a supernova interacting with helium-rich CSM, similar to a Type Ibn supernova. This event provides an apparently rare opportunity to view the inner workings of an interacting supernova. The observed properties can be explained by the explosion of a star in an aspherical CSM. The initial light is emitted from an extended CSM (∼4000 R⊙), which ionizes the exterior unshocked material. Some days after, the SN photosphere envelops this region, leading to the appearance of a SN IIb. Over time, the photosphere recedes in velocity space, revealing interaction between the supernova ejecta and the CSM that partially obscures the supernova nebular phase. Modelling of the initial spectrum reveals a surface composition consistent with compact H-deficient Wolf–Rayet and Luminous Blue Variable (LBV) stars. Such configurations may not be unusual, with SNe IIb being known to have signs of interaction so at least some SNe IIb and SNe Ibn may be the same phenomena viewed from different angles, or possibly with differing CSM configurations. 
    more » « less
  7. null (Ed.)
    ABSTRACT We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the All-Sky Automated Survey for Supernova survey at an absolute magnitude of MV ∼ −20.2 mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He i in early spectra, with He ii making an appearance after ∼70–100 d. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical active galactic nucleus in that they show a flat Balmer decrement (Hα/Hβ ∼ 1.5), suggesting the lines are collisionally excited rather than being produced via photoionization. The flat Balmer decrement together with the complex profiles suggests that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He ii may be due to an expanding photosphere or outflow, or late-time shocks in debris collisions. 
    more » « less
  8. We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 10 40  erg s −1 and their total radiated energies are on the order of (0.3–3) × 10 47 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56 Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56 Ni masses on the order of 10 −4 to 10 −3   M ⊙ . The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s −1 , along with Ca II features. In particular, the [Ca  II ] λ 7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events. 
    more » « less
  9. null (Ed.)
    ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of $${\it M}^{\rm max}_{g}= -17.84$$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (<200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙. 
    more » « less