skip to main content


Search for: All records

Creators/Authors contains: "Mahbub, A M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Platoon formation with connected and automated vehicles (CAVs) in a mixed traffic environment poses significant challenges due to the presence of human-driven vehicles (HDVs) with unknown dynamics and control actions. In this paper, we develop a safety-prioritized receding horizon control framework for creating platoons of HDVs preceded by a CAV Our framework ensures indirect control of the following HDVs by directly controlling the leading CAV given the safety constraints. The framework utilizes a data-driven prediction model that is based on the recursive least squares algorithm and the constant time headway relative velocity car-following model to predict future trajectories of human-driven vehicles. To demonstrate the efficacy of the proposed framework, we conduct numerical simulations and provide the associated scalability, robustness, and performance analyses. 
    more » « less
  2. Vehicle platooning using connected and automated vehicles (CAVs) has attracted considerable attention. In this paper, we address the problem of optimal coordination of CAV platoons at a highway on-ramp merging scenario. We present a single-level constrained optimal control framework that optimizes the fuel economy and travel time of the platoons while satisfying the state, control, and safety constraints. We also explore the effect of delayed communication among the CAV platoons and propose a robust coordination framework to enforce lateral and rear-end collision avoidance constraints in the presence of bounded delays. We provide a closed-form analytical solution to the optimal control problem with safety guarantees that can be implemented in real time. Finally, we validate the effectiveness of the proposed control framework using a high-fidelity commercial simulation environment.

     
    more » « less