skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mahjabin, Tasnuva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Trends in the extreme rainfall regimes were analyzed at 24 stations of Florida for four analysis periods: 1950–2010, 1960–2010, 1970–2010, and 1980–2010. A trend-free pre-whitening approach was utilized to correct data for autocorrelations. Non-parametric Mann-Kendall test and Theil-Sen approach were employed to detect and estimate trends in the magnitude of annual maximum rainfalls and in the number of annual above-threshold events (i.e., frequency). A bootstrap resampling approach was used to account for cross-correlations across sites and evaluate the global significance of trends at the 10% level (p-value ≤ 0.10). Dominant locally significant (p-value ≤ 0.10) increasing trends were found in the magnitudes of 1–12 h extreme rainfalls for the longest period, and in 6 h to 7 day rainfalls for the shortest period. The trends in 2–12 h rainfalls were also globally significant (i.e., exceeded the trends that could occur by chance). In contrast, globally significant decreasing trends were noted in the annual number of 1–3 h, 1–6 h, and 3–6 h extreme rainfalls during 1950–2010, 1960–2010, and 1980–2010, respectively. Trends in the number of 1–7 day extreme rainfalls were mixed, lacking global significance. Our findings would guide stormwater management in tropical/subtropical environments of Florida and around the world. 
    more » « less