skip to main content


Search for: All records

Creators/Authors contains: "Mahmood, Imran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Increased usage and non-efficient management of limited resources has created the risk of water resource scarcity. Due to climate change, urbanization, and lack of effective water resource management, countries like Pakistan are facing difficulties coping with the increasing water demand. Rapid urbanization and non-resilient infrastructures are the key barriers in sustainable urban water resource management. Therefore, there is an urgent need to address the challenges of urban water management through effective means. We propose a workflow for the modeling and simulation of sustainable urban water resource management and develop an integrated framework for the evaluation and planning of water resources in a typical urban setting. The proposed framework uses the Water Evaluation and Planning system to evaluate current and future water demand and the supply gap. Our simulation scenarios demonstrate that the demand–supply gap can effectively be dealt with by dynamic resource allocation, in the presence of assumptions, for example, those related to population and demand variation with the change of weather, and thus work as a tool for informed decisions for supply management. In the first scenario, 23% yearly water demand is reduced, while in the second scenario, no unmet demand is observed due to the 21% increase in supply delivered. Similarly, the overall demand is fulfilled through 23% decrease in water demand using water conservation. Demand-side management not only reduces the water usage in demand sites but also helps to save money, and preserve the environment. Our framework coupled with a visualization dashboard deployed in the water resource management department of a metropolitan area can assist in water planning and effective governance. 
    more » « less
  2. null (Ed.)
    Phoenix, an Active Management Area in the desert Southwest US, is the 5th most populated city in the US. Scarce local groundwater and water transported from external resources must be managed in the presence of different types of energy sources. Local and regional decision-makers are faced with answering challenging questions on managing water, energy supply, and demand over a few years to several decades. Prediction and planning for the interdependency of these entities can benefit from modeling the water and energy systems as well as their interactions with one another. In this paper, the integrated WEAP and LEAP tools and a modeling framework that externalizes their hidden linkage to an interaction model are described and compared using the Phoenix AMA. Loose coupling enabled by interaction modeling is a key for decision-policies that should be grounded at the nexus of the water-energy system of systems 
    more » « less
  3. null (Ed.)
    Phoenix, an Active Management Area in the desert Southwest US, is the 5th most populated city in the US. Scarce local groundwater and water transported from external resources must be managed in the presence of different types of energy sources. Local and regional decision-makers are faced with answering challenging questions on managing water, energy supply, and demand over a few years to several decades. Prediction and planning for the interdependency of these entities can benefit from modeling the water and energy systems as well as their interactions with one another. In this paper, the integrated WEAP and LEAP tools and a modeling framework that externalizes their hidden linkage to an interaction model are described and compared using the Phoenix AMA. Loose coupling enabled by interaction modeling is a key for decision-policies that should be grounded at the nexus of the water-energy system of systems. 
    more » « less