skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mahmood, Kazi_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The exploration of the Berry phase in classical mechanics has opened new frontiers in understanding the dynamics of physical systems, analogous to quantum mechanics. Here, we show controlled accumulation of the Berry phase in a two-level elastic bit, which is a classical counterpart to qubits, achieved by manipulating coupled granules with external drivers. Employing the Bloch sphere representation, the paper demonstrates the manipulation of elastic bit states and the realization of quantum-analog logic gates. A key achievement is the calculation of the Berry phase for various system states, revealing insights into the system’s topological nature. Unique to this study is the use of external parameters to explore topological transitions, contrasting with traditional approaches focusing on internal system modifications. By linking the classical and quantum worlds through the Berry phase of an elastic bit, this work extends the potential applications of topological concepts in designing new materials and computational models. 
    more » « less