skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maier, Thomas R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The generation of transgenic plants is essential for plant biology research to investigate plant physiology, pathogen interactions, and gene function. However, producing stable transgenic plants for plants such as soybean is a laborious and time-consuming process, which can impede research progress. Composite plants consisting of wild-type shoots and transgenic roots are an alternative method for generating transgenic plant tissues that can facilitate functional analysis of genes-ofinterest involved in root development or root-microbe interactions. In this report, we introduce a novel set of GATEWAYcompatible vectors that enable a wide range of molecular biology uses in roots of soybean composite plants. These vectors incorporate in-frame epitope fusions of green fluorescent protein, 3x-HA, or miniTurbo-ID, which can be easily fused to a gene-of-interest using the GATEWAY cloning system. Moreover, these vectors allow for the identification of transgenic roots using either mCherry fluorescence or the RUBY marker. We demonstrate the functionality of these vectors by expressing subcellular markers in soybean, providing evidence of their effectiveness in generating protein fusions in composite soybean plants. Furthermore, we show how these vectors can be used for gene function analysis by expressing the bacterial effector, AvrPphB in composite roots, enabling the identification of soybean targets via immunoprecipitation followed by mass spectrometry. Additionally, we demonstrate the successful expression of stable miniTurbo-ID fusion proteins in composite roots. Overall, this new set of vectors is a powerful tool that can be used to assess subcellular localization and perform gene function analyses in soybean roots without the need to generate stable transgenic plants. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026