Aryl alcohol‐type or phenolic fluorophores offer diverse opportunities for developing bioimaging agents and fluorescence probes. Due to the inherently acidic hydroxyl functionality, phenolic fluorophores provide pH‐dependent emission signals. Therefore, except for developing pH probes, the pH‐dependent nature of phenolic fluorophores should be considered in bioimaging applications but has been neglected. Here we show that a simple structural remedy converts conventional phenolic fluorophores into pH‐resistant derivatives, which also offer “medium‐resistant” emission properties. The structural modification involves a single‐step introduction of a hydrogen‐bonding acceptor such as morpholine nearby the phenolic hydroxyl group, which also leads to emission bathochromic shift, increased Stokes shift, enhanced photo‐stability and stronger emission for several dyes. The strategy greatly expands the current fluorophores’ repertoire for reliable bioimaging applications, as demonstrated here with ratiometric imaging of cells and tissues.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Acharya, Atanu (2)
-
Ahn, Kyo Han (2)
-
Dai, Mingchong (2)
-
Jung, Yun Lim (2)
-
Maity, Suman (2)
-
Sarkar, Sourav (2)
-
Shil, Anushree (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Sarkar, Sourav ; Shil, Anushree ; Maity, Suman ; Jung, Yun Lim ; Dai, Mingchong ; Acharya, Atanu ; Ahn, Kyo Han ( , Angewandte Chemie)
Abstract Aryl alcohol‐type or phenolic fluorophores offer diverse opportunities for developing bioimaging agents and fluorescence probes. Due to the inherently acidic hydroxyl functionality, phenolic fluorophores provide pH‐dependent emission signals. Therefore, except for developing pH probes, the pH‐dependent nature of phenolic fluorophores should be considered in bioimaging applications but has been neglected. Here we show that a simple structural remedy converts conventional phenolic fluorophores into pH‐resistant derivatives, which also offer “medium‐resistant” emission properties. The structural modification involves a single‐step introduction of a hydrogen‐bonding acceptor such as morpholine nearby the phenolic hydroxyl group, which also leads to emission bathochromic shift, increased Stokes shift, enhanced photo‐stability and stronger emission for several dyes. The strategy greatly expands the current fluorophores’ repertoire for reliable bioimaging applications, as demonstrated here with ratiometric imaging of cells and tissues.