skip to main content

Search for: All records

Creators/Authors contains: "Makida, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability andmore »Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.« less
  2. Free, publicly-accessible full text available November 1, 2022
  3. A correction to this paper has been published: 10.1140/epjc/s10052-021-09344-w
    Free, publicly-accessible full text available October 1, 2022
  4. Abstract This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, a , which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+ a model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton–proton collision data collected with the ATLAS experiment at $$\sqrt{s} = 13$$ smore »= 13  TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.« less
    Free, publicly-accessible full text available October 1, 2022
  5. Abstract Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36–81 fb $$^{-1}$$ - 1 of proton–proton collision data with a centre-of-mass energy of $$\sqrt{s}=13$$ s = 13   $${\text {Te}}{\text {V}}$$ TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti- $$k_t$$ k t jet algorithm with radius parameter $$R=0.4$$ R = 0.4 is the primary jetmore »definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets ( $$|\eta |<1.2$$ | η | < 1.2 ) vary from 1% for a wide range of high- $$p_{{\text {T}}}$$ p T jets ( $$2502.5~{\text {Te}}{\text {V}}$$ > 2.5 TeV ). The relative jet energy resolution is measured and ranges from ( $$24 \pm 1.5$$ 24 ± 1.5 )% at 20  $${\text {Ge}}{\text {V}}$$ GeV to ( $$6 \pm 0.5$$ 6 ± 0.5 )% at 300  $${\text {Ge}}{\text {V}}$$ GeV .« less
  6. Abstract The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at $$\sqrt{s} = 8\,\text {TeV}$$ s = 8 TeV . The dataset corresponds to an integrated luminosity of $$20.2\,\text {fb}^{-1}$$ 20.2 fb - 1 , and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant $$t{\bar{t}}$$ t tmore »¯ background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is $$\sigma _{tW} = 26 \pm 7\,\text {pb}$$ σ tW = 26 ± 7 pb , in good agreement with the Standard Model expectation.« less
  7. Abstract The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ( $$\tilde{\chi }^0_1$$ χ ~ 1 0 ), and quarks, are presented: the signal is characterised by the presence of a single charged lepton ( $$e^{\pm }$$ e ± or $$\mu ^{\pm }$$ μ ± ) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb $$^{-1}$$ - 1 of proton–proton collision data taken at a centre-of-mass energy $$\sqrt{s}=13$$ s = 13more »  delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2  (1.4 ) are excluded at 95% confidence level for a light $$\tilde{\chi }^0_1$$ χ ~ 1 0 .« less