skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Makwana, Mukesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precise timing underlies many behaviors, from musical performance to navigating a dynamic environment. This study examined how stable temporal patterns that emerge during goal-directed movements influence timing acuity in perceptual discrimination. Rather than relying on explicitly timed actions, we used a selfpaced throwing task in which temporal structure develops implicitly with practice. Across three experiments, participants were trained for four days, developing stable motor timing reflected in consistent ‘‘ball release times.’’ This emergent timing selectively enhanced sensitivity to matching temporal intervals in a perceptual discrimination task. Importantly, this effect was not explained by perceptual learning and persisted over several weeks, suggesting a durable motor-perceptual linkage. The results point to a shared representation of time in action and perception, an emergent timing primitive that arises through experience in spatiotemporal movements. These findings shed light on how motor learning can shape temporal perception in ecologically relevant contexts, with implications for rehabilitation and sensorimotor integration. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available April 7, 2026