skip to main content

Search for: All records

Creators/Authors contains: "Maladeniya, Charini P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A review with 132 references. Societal and regulatory pressures are pushing industry towards more sustainable energy sources, such as solar and wind power, while the growing popularity of portable cordless electronic devices continues. These trends necessitate the ability to store large amounts of power efficiently in rechargeable batteries that should also be affordable and long-lasting. Lithium-sulfur (Li-S) batteries have recently gained renewed interest for their potential low cost and high energy density, potentially over 2600 Wh kg−1. The current review will detail the most recent advances in early 2020. The focus will be on reports published since the last review on Li-S batteries. This review is meant to be helpful for beginners as well as useful for those doing research in the field, and will delineate some of the cutting-edge adaptations of many avenues that are being pursued to improve the performance and safety of Li-S batteries.
  2. Renewably-sourced, recyclable materials that can replace or extend the service life of existing technologies are essential to accomplish humanity's quest for sustainable living. In this contribution, remeltable composites were prepared in a highly atom-economical reaction between plant-derived terpenoid alcohols (10 wt% citronellol, geraniol, or farnesol) and elemental sulfur (90 wt%). Investigation into the microstructures led to elucidation of a mechanism for terpenoid polyene cyclization initiated by sulfur-centered radicals. The formation of these cyclic structures contributes significantly to understanding the mechanical properties of the materials and the extent to which linear versus crosslinked network materials are formed. The terpenoid–sulfur composites can be thermally processed at low temperatures of 120 °C without loss of mechanical properties, and the farnesol–sulfur composite so processed exhibits compressive strength 70% higher than required of concrete for residential building. The terpenoid–sulfur composites also resist degradation by oxidizing acid under conditions that disintegrate many commercial composites and cements. In addition to being stronger and more chemically resistant than some commercial products, the terpenoid–sulfur composites can be used to improve the acid resistance of mineral-based Portland cement as well. These terpenoid–sulfur composites thus hold promise as elements of sustainable construction on their own or as additives to extend themore »operational life of existing technologies, while the cyclization behaviour could be an important contributor in other polymerizations of terpenoids.« less