- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Boyer, A (2)
-
Malaguti, R (2)
-
Aaij, R (1)
-
Abdelmotteleb, ASW (1)
-
Abellan_Beteta, C (1)
-
Abudinén, F (1)
-
Achard, C (1)
-
Ackernley, T (1)
-
Adeva, B (1)
-
Adinolfi, M (1)
-
Adlarson, P (1)
-
Afsharnia, H (1)
-
Agapopoulou, C (1)
-
Aidala, CA (1)
-
Ajaltouni, Z (1)
-
Akar, S (1)
-
Akiba, K (1)
-
Albicocco, P (1)
-
Albrecht, J (1)
-
Alessio, F (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The CLAS12 deep-inelastic scattering experiment at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab conjugates luminosity and wide acceptance to study the 3D nucleon structure in the yet poorly explored valence region, and to perform precision measurements in hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification in the momentum range from 3 GeV/c to 8 GeV/c, with the kaon rate about one order of magnitude lower than the rate of pions and protons. The adopted solution comprises aerogel radiator and composite mirrors in a novel hybrid optics design, where either direct or reflected light could be imaged in a high-packed and high segmented photon detector. The first RICH module was assembled during the second half of 2017 and installed at the beginning of January 2018, in time for the start of the experiment. The second RICH module, planned with the goal to be ready for the beginning of the operation with polarized targets, has been timely built despite the complications caused by the pandemic crisis and successfully installed in June 2022. The detector performance is here discussed with emphasis on the operation and stability during the data-taking, calibration and alignment procedures, reconstruction and pattern recognition algorithms, and particle identification.more » « less
-
Aaij, R; Abdelmotteleb, ASW; Abellan_Beteta, C; Abudinén, F; Achard, C; Ackernley, T; Adeva, B; Adinolfi, M; Adlarson, P; Afsharnia, H; et al (, Journal of Instrumentation)The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software.more » « less
An official website of the United States government
