skip to main content

Search for: All records

Creators/Authors contains: "Maleski, Kathleen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MXenes are an emergent class of two-dimensional materials with a very wide spectrum of promising applications. The synthesis of multiple MXenes, specifically solid-solution MXenes, allows fine tuning of their properties, expands their range of applications, and leads to enhanced performance. The functionality of solid-solution MXenes is closely related to the valence state of their constituents: transition metals, oxygen, carbon, and nitrogen. However, the impact of changes in the oxidation state of elements in MXenes is not well understood. In this work, three interrelated solid-solution MXene systems (Ti 2− y Nb y CT x , Nb 2− y V y CT x , and Ti 2− y V y CT x ) were investigated with scanning transmission electron microscopy and electron energy-loss spectroscopy to determine the localized valence states of metals at the nanoscale. The analysis demonstrates changes in the electronic configuration of V upon modification of the overall composition and within individual MXene flakes. These shifts of oxidation state can explain the nonlinear optical and electronic features of solid-solution MXenes. Vanadium appears to be particularly sensitive to modification of the valence state, while titanium maintains the same oxidation state in Ti–Nb and Ti–V MXenes, regardless of stoichiometry. The study also explains Nb’s influential role in the previously observed electronic properties in the Nb–V and Nb–Ti systems. 
    more » « less
  2. Abstract

    The synthesis of low‐dimensional transition metal nitride (TMN) nanomaterials is developing rapidly, as their fundamental properties, such as high electrical conductivity, lead to many important applications. However, TMN nanostructures synthesized by traditional strategies do not allow for maximum conductivity and accessibility of active sites simultaneously, which is a crucial factor for many applications in plasmonics, energy storage, sensing, and so on. Unique interconnected two‐dimensional (2D) arrays of few‐nanometer TMN nanocrystals not only having electronic conductivity in‐plane, but also allowing transport of ions and electrolyte through the porous nanosheets, which are obtained by topochemical synthesis on the surface of a salt template, are reported. As a demonstration of their application in a lithium–sulfur battery, it is shown that 2D arrays of several nitrides can achieve a high initial capacity of >1000 mAh g−1at 0.2 C and only about 13% degradation over 1000 cycles at 1 C under a high areal sulfur loading (>5 mg cm−2).

    more » « less
  3. Abstract

    Wearable sensors for surface electromyography (EMG) are composed of single‐ to few‐channel large‐area contacts, which exhibit high interfacial impedance and require conductive gels or adhesives to record high‐fidelity signals. These devices are also limited in their ability to record activation across large muscle groups due to poor spatial coverage. To address these challenges, a novel high‐density EMG array is developed based on titanium carbide (Ti3C2Tx) MXene encapsulated in parylene‐C. Ti3C2Txis a 2D nanomaterial with excellent electrical, electrochemical, and mechanical properties, which forms colloidally stable aqueous dispersions, enabling safe, scalable solutions‐processing. Leveraging the excellent combination of metallic conductivity, high pseudocapacitance, and ease of processability of Ti3C2TxMXene, the fabrication of gel‐free, high‐density EMG arrays is demonstrated, which are ≈8 µm thick, feature 16 recording channels, and are highly skin conformable. The impedance of Ti3C2Txelectrodes in contact with human skin is 100–1000× lower than the impedance of commercially available electrodes which require conductive gels to be effective. Furthermore, the arrays can record high‐fidelity, low‐noise EMG, and can resolve muscle activation with improved spatiotemporal resolution and sensitivity compared to conventional gelled electrodes. Overall, the results establish Ti3C2Tx‐based bioelectronic interfaces as a powerful platform technology for high‐resolution, noninvasive wearable sensing technologies.

    more » « less
  4. Abstract

    Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness are highly desirable for next‐generation portable and wearable electronic devices. Here, spin spray layer‐by‐layer (SSLbL) to rapidly assemble Ti3C2TxMXene‐carbon nanotube (CNT) composite films is shown and their potential for EMI shielding is demonstrated. The SSLbL technique allows strategic combinations of nanostructured materials and polymers providing a rich platform for developing hierarchical architectures with desirable cross‐functionalities including controllable transparency, thickness, and conductivity, as well as high stability and flexibility. These semi‐transparent LbL MXene‐CNT composite films show high conductivities up to 130 S cm−1and high specific shielding effectiveness up to 58 187 dB cm2g−1, which is attributed to both the excellent electrical conductivity of the conductive fillers (i.e., MXene and CNT) and the enhanced absorption with the LbL architecture of the films. Remarkably, these values are among the highest reported values for flexible and semi‐transparent composite thin films. This work could offer new solutions for next‐generation EMI shielding challenges.

    more » « less