skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Malkan, M. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Multiwavelength variability studies of active galactic nuclei can be used to probe their inner regions that are not directly resolvable. Dust reverberation mapping (DRM) estimates the size of the dust emitting region by measuring the delays between the infrared (IR) response to variability in the optical light curves. We measure DRM lags of Zw229-015 between optical ground-based and Kepler light curves and concurrent IR Spitzer 3.6 and 4.5 µm light curves from 2010 to 2015, finding an overall mean rest-frame lag of 18.3 ± 4.5 d. Each combination of optical and IR light curve returns lags that are consistent with each other within 1σ, which implies that the different wavelengths are dominated by the same hot dust emission. The lags measured for Zw229-015 are found to be consistently smaller than predictions using the lag–luminosity relationship. Also, the overall IR response to the optical emission actually depends on the geometry and structure of the dust emitting region as well, so we use Markov chain Monte Carlo modelling to simulate the dust distribution to further estimate these structural and geometrical properties. We find that a large increase in flux between the 2011–2012 observation seasons, which is more dramatic in the IR light curve, is not well simulated by a single dust component. When excluding this increase in flux, the modelling consistently suggests that the dust is distributed in an extended flat disc, and finds a mean inclination angle of 49$$^{+3}_{-13}$$ deg. 
    more » « less
  2. Abstract We present mid-infrared spectroscopic observations of the nucleus of the nearby Seyfert galaxy NGC 7469 taken with the MIRI instrument on the James Webb Space Telescope (JWST) as part of Directors Discretionary Time Early Release Science program 1328. The high-resolution nuclear spectrum contains 19 emission lines covering a wide range of ionization. The high-ionization lines show broad, blueshifted emission reaching velocities up to 1700 km s −1 and FWHM ranging from ∼500 to 1100 km s −1 . The width of the broad emission and the broad-to-narrow line flux ratios correlate with ionization potential. The results suggest a decelerating, stratified, AGN-driven outflow emerging from the nucleus. The estimated mass outflow rate is 1–2 orders of magnitude larger than the current black hole accretion rate needed to power the AGN. Eight pure rotational H 2 emission lines are detected with intrinsic widths ranging from FWHM ∼125 to 330 km s −1 . We estimate a total mass of warm H 2 gas of ∼1.2 × 10 7 M ⊙ in the central 100 pc. The PAH features are extremely weak in the nuclear spectrum, but a 6.2 μ m PAH feature with an equivalent width of ∼0.07 μ m and a flux of 2.7 × 10 −17 W m −2 is detected. The spectrum is steeply rising in the mid-infrared, with a silicate strength of ∼0.02, significantly smaller than seen in most PG QSOs but comparable to other Seyfert 1s. These early MIRI mid-infrared IFU data highlight the power of JWST to probe the multiphase interstellar media surrounding actively accreting supermassive black holes. 
    more » « less
  3. Abstract We present results from the James Webb Space Telescope Director’s Discretionary Time Early Release Science program 1328 targeting the nearby, luminous infrared galaxy, VV 114. We use the MIRI and NIRSpec instruments to obtain integral-field spectroscopy of the heavily obscured eastern nucleus (V114E) and surrounding regions. The spatially resolved, high-resolution spectra reveal the physical conditions in the gas and dust over a projected area of 2–3 kpc that includes the two brightest IR sources, the NE and SW cores. Our observations show for the first time spectroscopic evidence that the SW core hosts an active galactic nucleus as evidenced by its very low 6.2μm and 3.3μm polycyclic aromatic hydrocarbon equivalent widths (0.12 and 0.017μm, respectively) and mid- and near-IR colors. Our observations of the NE core show signs of deeply embedded star formation including absorption features due to aliphatic hydrocarbons, large quantities of amorphous silicates, as well as HCN due to cool gas along the line of sight. We detect elevated [Feii]/Pfαconsistent with extended shocks coincident with enhanced emission from warm H2, far from the IR-bright cores and clumps. We also identify broadening and multiple kinematic components in both H2and fine structure lines caused by outflows and previously identified tidal features. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)