skip to main content

Search for: All records

Creators/Authors contains: "Mallia, Derek V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Abstract

    Mountain environments are profoundly impacted by the deposition of mineral dust, yet the degree to which this material is far-traveled or intra-regional is typically unclear. This distinction is fundamental to model future changes in mountain geoecosystems resulting from climatic or anthropogenic forcing in dust source regions. We address this question with a network of 17 passive dust samplers installed in primarily mountain locations in Utah, Nevada, and Idaho between October, 2020 and October 2021. For each collector, the dust deposition rate was calculated, and the physical and chemical properties of the dust were constrained. Results were combined with backward trajectory modeling to identify the geologic characteristics of the area over which air passed most frequently in route to each collector (the ‘hot spot’). Dust properties differ significantly between collectors, hot spots for many collectors are spatially discrete, and the dominant geologies in the hot spots corresponding to each collector vary considerably. These results support the hypothesis that the majority of the dust deposited in the areas we studied is sourced from arid lowlands in the surrounding region.

    more » « less
  3. The objective of this study was to assess feasibility of integrating a coupled fire-atmosphere model within an air-quality forecast system to create a multiscale air-quality modeling framework designed to simulate wildfire smoke. For this study, a coupled fire-atmosphere model, WRF-SFIRE, was integrated, one-way, with the AIRPACT air-quality modeling system. WRF-SFIRE resolved local meteorology, fire growth, the fire plume rise, and smoke dispersion, and provided AIRPACT with fire inputs. The WRF-SFIRE-forecasted fire area and the explicitly resolved vertical smoke distribution replaced the parameterized BlueSky fire inputs used by AIRPACT. The WRF-SFIRE/AIRPACT integrated framework was successfully tested for two separate wildfire events (2015 Cougar Creek and 2016 Pioneer fires). The execution time for the WRF-SFIRE simulations was <3 h for a 48 h-long forecast, suggesting that integrating coupled fire-atmosphere simulations within the daily AIRPACT cycle is feasible. While the WRF-SFIRE forecasts realistically captured fire growth 2 days in advance, the largest improvements in the air quality simulations were associated with the wildfire plume rise. WRF-SFIRE-estimated plume tops were within 300-m of satellite-estimated plume top heights for both case studies analyzed in this study. Air quality simulations produced by AIRPACT with and without WRF-SFIRE inputs were evaluated with nearby PM 2 . 5 measurement sites to assess the performance of our multiscale smoke modeling framework. The largest improvements when coupling WRF-SFIRE with AIRPACT were observed for the Cougar Creek Fire where model errors were reduced by ∼50%. For the second case (Pioneer fire), the most notable change with WRF-SFIRE coupling was that the probability of detection increased from 16 to 52%. 
    more » « less
  4. null (Ed.)
    Producing high-resolution near-real-time forecasts of fire behavior and smoke impact that are useful for fire and air quality management requires accurate initialization of the fire location. One common representation of the fire progression is through the fire arrival time, which defines the time that the fire arrives at a given location. Estimating the fire arrival time is critical for initializing the fire location within coupled fire-atmosphere models. We present a new method that utilizes machine learning to estimate the fire arrival time from satellite data in the form of burning/not burning/no data rasters. The proposed method, based on a support vector machine (SVM), is tested on the 10 largest California wildfires of the 2020 fire season, and evaluated using independent observed data from airborne infrared (IR) fire perimeters. The SVM method results indicate a good agreement with airborne fire observations in terms of the fire growth and a spatial representation of the fire extent. A 12% burned area absolute percentage error, a 5% total burned area mean percentage error, a 0.21 False Alarm Ratio average, a 0.86 Probability of Detection average, and a 0.82 Sørensen’s coefficient average suggest that this method can be used to monitor wildfires in near-real-time and provide accurate fire arrival times for improving fire modeling even in the absence of IR fire perimeters. 
    more » « less
  5. null (Ed.)
    Forecasting fire growth, plume rise and smoke impacts on air quality remains a challenging task. Wildland fires dynamically interact with the atmosphere, which can impact fire behavior, plume rises, and smoke dispersion. For understory fires, the fire propagation is driven by winds attenuated by the forest canopy. However, most numerical weather prediction models providing meteorological forcing for fire models are unable to resolve canopy winds. In this study, an improved canopy model parameterization was implemented within a coupled fire-atmosphere model (WRF-SFIRE) to simulate a prescribed burn within a forested plot. Simulations with and without a canopy wind model were generated to determine the sensitivity of fire growth, plume rise, and smoke dispersion to canopy effects on near-surface wind flow. Results presented here found strong linkages between the simulated fire rate of spread, heat release and smoke plume evolution. The standard WRF-SFIRE configuration, which uses a logarithmic interpolation to estimate sub-canopy winds, overestimated wind speeds (by a factor 2), fire growth rates and plume rise heights. WRF-SFIRE simulations that implemented a canopy model based on a non-dimensional wind profile, saw significant improvements in sub-canopy winds, fire growth rates and smoke dispersion when evaluated with observations. 
    more » « less
  6. Viegas, Domingos Xavier (Ed.)
    During the summer of 2015, a number of wildfires fires burned across northern California, which produced significant smoke across the region. Smoke from these wildfires hindered fire-fighting efforts by delaying helicopter operations and exposed communities to high concentrations of atmospheric pollutants. Nighttime inversions are common across the western U.S. and usually mix out during the early afternoon as a result of convective mixing from daytime heating. However, atmospheric conditions in valleys adjacent to the aforementioned wildfires remained stable throughout the afternoon. It is hypothesized that the smoke from nearby wildfires enhanced atmospheric stability due to surface cooling caused by reduced incoming solar radiation, and possibly by warming aloft due to absorption of the incoming solar radiation in the smoke layer. At the same time, mid-level heating from the wildfire could have increased atmospheric stability and extended the duration of the inversion. In this study, we utilize the WRF-SFIRE-CHEM modeling framework, which couples an atmospheric, chemical, and fire spread model in an effort the model the impacts of smoke on local inversions and to improve the physical understanding behind these smoke-induced inversion episodes. This modeling framework was used to simulate the Route and South Complex fires between August 10 – August 26th, 2015. Preliminary results indicate that wildfire smoke may have significantly reduced incoming solar radiation, leading to local surface cooling by up to 2-3 degrees. Direct heating from the fire itself does not significantly enhance atmospheric stability. However, mid-level warming was observed in the smoke layer suggesting that absorption in this layer may have enhanced the inversion. This study suggests the including the fire-smoke- atmosphere feedbacks in a coupled modeling framework such as WRF-SFIRE-CHEM may help in capturing the impacts of wildfire smoke on near-surface stability and local inversions. 
    more » « less
  7. null (Ed.)
    Abstract Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models. 
    more » « less
  8. Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found – i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ∼ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence. 
    more » « less
  9. Abstract

    One of the primary challenges associated with evaluating smoke models is the availability of observations. The limited density of traditional air quality monitoring networks makes evaluating wildfire smoke transport challenging, particularly over regions where smoke plumes exhibit significant spatiotemporal variability. In this study, we analyzed smoke dispersion for the 2018 Pole Creek and Bald Mountain Fires, which were located in central Utah. Smoke simulations were generated using a coupled fire‐atmosphere model, which simultaneously renders fire growth, fire emissions, plume rise, smoke dispersion, and fire‐atmosphere interactions. Smoke simulations were evaluated using PM2.5observations from publicly accessible fixed sites and a semicontinuously running mobile platform. Calibrated measurements of PM2.5made by low‐cost sensors from the Air Quality and yoU (AQ&U) network were within 10% of values reported at nearby air quality sites that used Federal Equivalent Methods. Furthermore, results from this study show that low‐cost sensor networks and mobile measurements are useful for characterizing smoke plumes while also serving as an invaluable data set for evaluating smoke transport models. Finally, coupled fire‐atmosphere model simulations were able to capture the spatiotemporal variability of wildfire smoke in complex terrain for an isolated smoke event caused by local fires. Results here suggest that resolving local drainage flow could be critical for simulating smoke transport in regions of significant topographic relief.

    more » « less