Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2023
-
Free, publicly-accessible full text available September 5, 2023
-
New phases of matter emerge at the edge of magnetic instabilities. In local moment systems, such as heavy fermions, the magnetism can be destabilized by pressure, chemical doping, and, rarely, by magnetic field, towards a zero-temperature transition at a quantum critical point (QCP). Even more rare are instances of QCPs induced by pressure or doping in itinerant moment systems, with no known examples of analogous field-induced T = 0 transitions. Here we report the discovery of a new itinerant antiferromagnet with no magnetic constituents, in single crystals of Ti3Cu4 with T_N = 11.3 K. Band structure calculations point to an orbital-selective, spin density wave ground state, a consequence of the square net structural motif in Ti3Cu4. A small magnetic field, H_C = 4.87 T, suppresses the long-range order via a continuous second-order transition, resulting in a field-induced QCP. The magnetic Grüneisen ratio diverges as H→H_C and T→0, with a sign change at H_C and 1/T scaling at H = H_C, providing evidence from thermodynamic measurements for quantum criticality for H∥c. Non-Fermi liquid (NFL) to Fermi liquid (FL) crossover is observed close to the QCP, as revealed by the power law behavior of the electrical resistivity.Free, publicly-accessible full text available April 1, 2023
-
Abstract New phases of matter emerge at the edge of magnetic instabilities, which can occur in materials with moments that are localized, itinerant or intermediate between these extremes. In local moment systems, such as heavy fermions, the magnetism can be tuned towards a zero-temperature transition at a quantum critical point (QCP) via pressure, chemical doping, and, rarely, magnetic field. By contrast, in itinerant moment systems, QCPs are more rare, and they are induced by pressure or doping; there are no known examples of field induced transitions. This means that no universal behaviour has been established across the whole itinerant-to-local moment range—a substantial gap in our knowledge of quantum criticality. Here we report an itinerant antiferromagnet, Ti3Cu4, that can be tuned to a QCP by a small magnetic field. We see signatures of quantum criticality and the associated non-Fermi liquid behaviour in thermodynamic and transport measurements, while band structure calculations point to an orbital-selective, spin density wave ground state, a consequence of the square net structural motif in Ti3Cu4. Ti3Cu4thus provides a platform for the comparison and generalisation of quantum critical behaviour across the whole spectrum of magnetism.
-
Abstract Nonequilibrium phase transitions play a pivotal role in broad physical contexts, from condensed matter to cosmology. Tracking the formation of nonequilibrium phases in condensed matter requires a resolution of the long-range cooperativity on ultra-short timescales. Here, we study the spontaneous transformation of a charge-density wave in CeTe3from a stripe order into a bi-directional state inaccessible thermodynamically but is induced by intense laser pulses. With ≈100 fs resolution coherent electron diffraction, we capture the entire course of this transformation and show self-organization that defines a nonthermal critical point, unveiling the nonequilibrium energy landscape. We discuss the generation of instabilities by a swift interaction quench that changes the system symmetry preference, and the phase ordering dynamics orchestrated over a nonadiabatic timescale to allow new order parameter fluctuations to gain long-range correlations. Remarkably, the subsequent thermalization locks the remnants of the transient order into longer-lived topological defects for more than 2 ns.