skip to main content

Search for: All records

Creators/Authors contains: "Malone, Sparkle L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The BlueFlux field campaign, supported by NASA’s Carbon Monitoring System, will develop prototype blue carbon products to inform coastal carbon management. While blue carbon has been suggested as a nature-based climate solution (NBS) to remove carbon dioxide (CO 2 ) from the atmosphere, these ecosystems also release additional greenhouse gases (GHGs) such as methane (CH 4 ) and are sensitive to disturbances including hurricanes and sea-level rise. To understand blue carbon as an NBS, BlueFlux is conducting multi-scale measurements of CO 2 and CH 4 fluxes across coastal landscapes, combined with long-term carbon burial, in Southern Florida using chambers, flux towers, and aircraft combined with remote-sensing observations for regional upscaling. During the first deployment in April 2022, CO 2 uptake and CH 4 emissions across the Everglades National Park averaged −4.9 ± 4.7 μ mol CO 2 m −2 s −1 and 19.8 ± 41.1 nmol CH 4 m −2 s −1 , respectively. When scaled to the region, mangrove CH 4 emissions offset the mangrove CO 2 uptake by about 5% (assuming a 100 year CH 4 global warming potential of 28), leading to total net uptake of 31.8 Tg CO 2 -eq y −1 . Subsequent fieldmore »campaigns will measure diurnal and seasonal changes in emissions and integrate measurements of long-term carbon burial to develop comprehensive annual and long-term GHG budgets to inform blue carbon as a climate solution.« less
    Free, publicly-accessible full text available July 1, 2024
  2. Wetlands are the largest natural source of methane (CH4); however, the contribution of subtropical wetlands to global CH4 budgets is still unclear due to difficulties in accurately quantifying CH4 emissions from these complex ecosystems. Both direct (water management strategies) and indirect (altered weather patterns associated with climate change) anthropogenic influences are also leading to greater uncertainties in our ability to determine changes in CH4 emissions from these ecosystems. This study compares CH4 fluxes from two freshwater marshes with different hydroperiods (short versus long) in the Florida Everglades to examine temporal patterns and biophysical drivers of CH4 fluxes. Both sites showed similar seasonal patterns across years with higher CH4 release during wet seasons versus dry seasons. The long hydroperiod site showed stronger seasonal patterns and overall, emitted more CH4 than the short hydroperiod site; however, no distinctive diurnal patterns were observed. We found that air temperature was a significant positive driver of CH4 fluxes for both sites regardless of season. In addition, gross ecosystem exchange was a significant negative predictor of CH4 emissions in the dry season at the long hydroperiod site. CH4 fluxes were impacted by water level and its changes over site and season, and time scales, which aremore »influenced by rainfall and water management practices. Thus with increasing water distribution associated the Comprehensive Everglades Restoration Plan we expect increases in CH4 emissions, and when couple with increased with projected higher temperatures in the region, these increases may be enhanced, leading to greater radiative forcing.« less
  3. Abstract. Understanding the sources and sinks of methane (CH4)is critical to both predicting and mitigating future climate change. Thereare large uncertainties in the global budget of atmospheric CH4, butnatural emissions are estimated to be of a similar magnitude toanthropogenic emissions. To understand CH4 flux from biogenic sourcesin the United States (US) of America, a multi-scale CH4 observationnetwork focused on CH4 flux rates, processes, and scaling methods isrequired. This can be achieved with a network of ground-based observationsthat are distributed based on climatic regions and land cover. To determinethe gaps in physical infrastructure for developing this network, we need tounderstand the landscape representativeness of the current infrastructure.We focus here on eddy covariance (EC) flux towers because they are essentialfor a bottom-up framework that bridges the gap between point-based chambermeasurements and airborne or satellite platforms that inform policydecisions and global climate agreements. Using dissimilarity,multidimensional scaling, and cluster analysis, the US was divided into 10clusters distributed across temperature and precipitation gradients. Weevaluated dissimilarity within each cluster for research sites with activeCH4 EC towers to identify gaps in existing infrastructure that limitour ability to constrain the contribution of US biogenic CH4 emissionsto the global budget. Through our analysis using climate, land cover, andlocation variables,more »we identified priority areas for research infrastructureto provide a more complete understanding of the CH4 flux potential ofecosystem types across the US. Clusters corresponding to Alaska and theRocky Mountains, which are inherently difficult to capture, are the mostpoorly represented, and all clusters require a greater representation ofvegetation types.« less
  4. null (Ed.)
    Abstract How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO 2 exchange (NEE) and ecosystem respiration ( R eco ) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature ( T water ), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO 2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m −2  day −1 and aquatic respiration ( R Aq ) from 0 to 6.13 g C m −2  day −1 . Nonlinear interactions between water level, T water , and GAPP and R Aq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod sitemore »(mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.« less
  5. Abstract

    Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2) fluxes by analysing a 10‐year (2008–2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high‐WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2source, as opposed to being a sink or neutral for CO2in other years. Furthermore,more »the extreme inundation in 2016 was followed by a 4‐month postinundation period with lower net ecosystem CO2uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.

    « less
  6. Abstract Aim

    We may be able to buffer biodiversity against the effects of ongoing climate change by prioritizing the protection of habitat with diverse physical features (high geodiversity) associated with ecological and evolutionary mechanisms that maintain high biodiversity. Nonetheless, the relationships between biodiversity and habitat vary with spatial and biological context. In this study, we compare how well habitat geodiversity (spatial variation in abiotic processes and features) and climate explain biodiversity patterns of birds and trees. We also evaluate the consistency of biodiversity–geodiversity relationships across ecoregions.


    Contiguous USA.

    Time period


    Taxa studied

    Birds and trees.


    We quantified geodiversity with remotely sensed data and generated biodiversity maps from the Forest Inventory and Analysis and Breeding Bird Survey datasets. We fitted multivariate regressions to alpha, beta and gamma diversity, accounting for spatial autocorrelation among Nature Conservancy ecoregions and relationships among taxonomic, phylogenetic and functional biodiversity. We fitted models including climate alone (temperature and precipitation), geodiversity alone (topography, soil and geology) and climate plus geodiversity.


    A combination of geodiversity and climate predictor variables fitted most forms of bird and tree biodiversity with < 10% relative error. Models using geodiversity and climate performed better for local (alpha) and regional (gamma) diversity than for turnover‐based (beta) diversity. Amongmore »geodiversity predictors, variability of elevation fitted biodiversity best; interestingly, topographically diverse places tended to have higher tree diversity but lower bird diversity.

    Main conclusions

    Although climatic predictors tended to have larger individual effects than geodiversity, adding geodiversity improved climate‐only models of biodiversity. Geodiversity was correlated with biodiversity more consistently than with climate across ecoregions, but models tended to have a poor fit in ecoregions held out of the training dataset. Patterns of geodiversity could help to prioritize conservation efforts within ecoregions. However, we need to understand the underlying mechanisms more fully before we can build models transferable across ecoregions.

    « less
  7. Abstract Issue

    Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity–geodiversity relationships across scales.


    We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) andc. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation.


    With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity.more »Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity–geodiversity relationships across scales and guide the conservation of nature.

    « less
  8. Abstract

    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user communitymore »are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building.

    « less