skip to main content

Search for: All records

Creators/Authors contains: "Maloney, Eric D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Madden-Julian oscillation (MJO) has profound impacts on weather and climate phenomena, and thus changes in its activity have important implications under human-induced global climate change. Here, the time at which the MJO change signal emerges from natural variability under anthropogenic warming is investigated. Using simulations of the Community Earth System Model version 2 large ensemble forced by the shared socioeconomic pathways SSP370 scenario, an increase in ensemble mean MJO precipitation amplitude and a smaller increase in MJO circulation amplitude occur by the end of the 21 st century, consistent with previous studies. Notably, the MJO precipitation amplitude change signal generally emerges more than a decade earlier than that of MJO wind amplitude. MJO amplitude changes also emerge earlier over the eastern Pacific than other parts of the tropics. Our findings provide valuable information on the potential changes of MJO variability with the aim of improving predictions of the MJO and its associated extreme events.
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available April 27, 2024
  3. Abstract The impact of the environmental background wind on the diurnal cycle near tropical islands is examined in observations and an idealized model. Luzon Island in the northern Philippines is used as an observational test case. Composite diurnal cycles of CMORPH precipitation are constructed based on an index derived from the first empirical orthogonal function (EOF) of ERA5 zonal wind profiles. A strong precipitation diurnal cycle and pronounced offshore propagation in the leeward direction tends to occur on days with a weak, offshore prevailing wind. Strong background winds, particularly in the onshore direction, are associated with a suppressed diurnal cycle. Idealized high resolution 2-D Cloud Model 1 (CM1) simulations test the dependence of the diurnal cycle on environmental wind speed and direction by nudging the model base-state toward composite profiles derived from the reanalysis zonal wind index. These simulations can qualitatively replicate the observed development, strength, and offshore propagation of diurnally generated convection under varying wind regimes. Under strong background winds, the land-sea contrast is reduced, which leads to a substantial reduction in the strength of the sea-breeze circulation and precipitation diurnal cycle. Weak offshore prevailing winds favor a strong diurnal cycle and offshore leeward propagation, with the direction ofmore »propagation highly sensitive to the background wind in the lower free troposphere. Offshore propagation speed appears consistent with density current theory rather than a direct coupling to a single gravity wave mode, though gravity waves may contribute to a destabilization of the offshore environment.« less
    Free, publicly-accessible full text available October 6, 2023
  4. Changes to the tropical eastern North Pacific Intraseasonal Oscillation (ISO) at the end of the 21st century and implications for tropical cyclone (TC) genesis are examined in the Shared Socioeconomic Pathways (SSP585) scenario of the Coupled Model Intercomparison Project phase 6 (CMIP6) data set. Multimodel mean composite low-level wind and precipitation anomalies associated with the leading intraseasonal mode indicate that precipitation amplitude increases while wind amplitude weakens under global warming, consistent with previous studies for the Indo-Pacific warm pool. The eastern North Pacific intraseasonal precipitation/wind pattern also tends to shift southwestward in a warmer climate, associated with weaker positive precipitation anomalies near the coast of Mexico and Central America during the enhanced convection/westerly wind phase. Implications for the modulation of TC genesis by the leading intraseasonal mode are then explored using an empirical genesis potential index (GPI). In the historical simulation, GPI shows positive anomalies in the eastern North Pacific in the convectively enhanced phase of the ISO. The ISO’s modulation of GPI weakens near the coast of Mexico and Central America with warming, associated with a southward shift of GPI anomalies. Further examination of the contribution from individual environmental variables that enter the GPI shows that relative humidity andmore »vorticity changes during ISO events weaken positive GPI anomalies near the Mexican coast with warming and make genesis more favorable to the southwest. The impact of vertical shear anomaly changes is also to favor genesis away from the coast. These results suggest a weaker modulation of TCs near the Mexican Coast by the ISO in a warmer climate.« less
  5. Abstract The excitation of the Pacific–North American (PNA) teleconnection pattern by the Madden–Julian oscillation (MJO) has been considered one of the most important predictability sources on subseasonal time scales over the extratropical Pacific and North America. However, until recently, the interactions between tropical heating and other extratropical modes and their relationships to subseasonal prediction have received comparatively little attention. In this study, a linear inverse model (LIM) is applied to examine the tropical–extratropical interactions. The LIM provides a means of calculating the response of a dynamical system to a small forcing by constructing a linear operator from the observed covariability statistics of the system. Given the linear assumptions, it is shown that the PNA is one of a few leading modes over the extratropical Pacific that can be strongly driven by tropical convection while other extratropical modes present at most a weak interaction with tropical convection. In the second part of this study, a two-step linear regression is introduced that leverages a LIM and large-scale climate variability to the prediction of hydrological extremes (e.g., atmospheric rivers) on subseasonal time scales. Consistent with the findings of the first part, most of the predictable signals on subseasonal time scales are determined bymore »the dynamics of the MJO–PNA teleconnection while other extratropical modes are important only at the shortest forecast leads.« less
  6. Abstract This study investigates the transition of a Panama Bight mesoscale convective system (MCS) into the easterly wave (EW) that became Hurricane Carlotta (2012). Reanalysis, observations, and a convective-permitting Weather Research and Forecasting (WRF) Model simulation are used to analyze the processes contributing to EW genesis. A vorticity budget analysis shows that convective coupling and vortex stretching are very important to the transition in this case, while horizontal advection is mostly responsible for the propagation of the system. In the model, the disturbance is dominated by stratiform vertical motion profiles and a midlevel vortex, while the system is less top-heavy and is characterized by more prominent low-level vorticity later in the transition in reanalysis. The developing disturbance starts its evolution as a mesoscale convective system in the Bight of Panama. Leading up to MCS formation the Chocó jet intensifies, and during the MCS-to-EW transition the Papagayo jet strengthens. Differences in the vertical structure of the system between reanalysis and the model suggest that the relatively more bottom-heavy disturbance in reanalysis may have stronger interactions with the Papagayo jet. Field observations like those collected during the Organization of Tropical East Pacific Convection (OTREC) campaign are needed to further our understanding ofmore »this east Pacific EW genesis pathway and the factors that influence it, including the important role for the vertical structure of the developing disturbances in the context of the vorticity budget.« less
  7. Abstract The Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment conducted a field campaign inAugust-October 2018. The R/V Thomas G. Thompson made two cruises in thewestern North Pacific region north of Palau and east of the Philippines. Using select field observations and global observational and reanalysis data sets, this study describes the large-scale state and evolution of the atmosphere and ocean during these cruises. Intraseasonal variability was weak during the field program, except for a period of suppressed convection in October. Tropical cyclone activity, on the other hand, was strong. Variability at the ship location was characterized by periods of low-level easterly atmospheric flow with embedded westward propagating synoptic-scale atmospheric disturbances, punctuated by periods of strong low-level westerly winds that were both connected to the Asian monsoon westerlies and associated with tropical cyclones. In the most dramatic case, westerlies persisted for days during and after tropical cyclone Jebi had passed to the north of the ship. In these periods, the sea surface temperature was reduced by a couple of degrees by both wind mixing and net surface heat fluxes that were strongly (~200 Wm −2 ) out of the ocean, due to both large latent heat flux and cloud shading associatedmore »with widespread deep convection. Underway conductivity-temperature transects showed dramatic cooling and deepening of the ocean mixed layer and erosion of the barrier layer after the passage of Typhoon Mangkhut due to entrainment of cooler water from below. Strong zonal currents observed over at least the upper 400 meters were likely related to the generation and propagation of near-inertial currents.« less
  8. Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United Statesmore »and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks.« less
  9. Mechanisms that cause changes in Madden–Julian oscillation (MJO) precipitation amplitude under global warming are examined in models from phase 5 of the Coupled Model Intercomparison Project. Under global warming in representative concentration pathway 8.5, MJO precipitation intensifies in most models relative to current climate while MJO wind circulations increase at a slower rate or weaken. Changes in MJO precipitation intensity are partially controlled by changes in moisture profiles and static stability. The vertical moisture gradient increases in the lower half of the troposphere in response to the surface warming, while the vertical static stability gradient increases due to preferential warming in the upper troposphere. A nondimensional quantity called α has been defined that gives the efficiency of vertical advective moistening associated with diabatic processes in the free troposphere, and has been hypothesized by previous studies to regulate MJO amplitude. The term α is proportional to the vertical moisture gradient and inversely proportional to static stability. Under global warming, the increased vertical moisture gradient makes α larger in models, despite increased static stability. Although α increases in all models, MJO precipitation amplitude decreases in some models, contrary to expectations. It is demonstrated that in these models more top-heavy MJO diabatic heatingmore »with warming overwhelms the effect of increased α to make vertical moisture advection less efficient.« less