Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The coronal heating problem has been a major challenge in solar physics, and a tremendous amount of effort has been made over the past several decades to solve it. In this paper, we aim at answering how the physical processes behind the Alfvén wave turbulent heating adopted in the Alfvén Wave Solar atmosphere Model (AWSoM) unfold in individual plasma loops in an active region (AR). We perform comprehensive investigations in a statistical manner on the wave dissipation and reflection, temperature distribution, heating scaling laws, and energy balance along the loops, providing in-depth insights into the energy allocation in the lower solar atmosphere. We demonstrate that our 3D global model with a physics-based phenomenological formulation for the Alfvén wave turbulent heating yields a heating rate exponentially decreasing from loop footpoints to top, which had been empirically assumed in the past literature. A detailed differential emission measure (DEM) analysis of the AR is also performed, and the simulation compares favorably with DEM curves obtained from Hinode/Extreme-ultraviolet Imaging Spectrometer observations. This is the first work to examine the detailed AR energetics of our AWSoM model with high numerical resolution and further demonstrates the capabilities of low-frequency Alfvén wave turbulent heating in producing realistic plasma properties and energetics in an AR.more » « less
-
Abstract We explore the performance of the Alfvén Wave Solar atmosphere Model with near-real-time (NRT) synoptic maps of the photospheric vector magnetic field. These maps, produced by assimilating data from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory, use a different method developed at the National Solar Observatory (NSO) to provide a near contemporaneous source of data to drive numerical models. Here, we apply these NSO-HMI-NRT maps to simulate three full Carrington rotations: 2107.69 (centered on the 2011 March 7 20:12 CME event), 2123.5 (centered on 2012 May 11), and 2219.12 (centered on the 2019 July 2 solar eclipse), which together cover various activity levels for solar cycle 24. We show the simulation results, which reproduce both extreme ultraviolet emission from the low corona while simultaneously matching in situ observations at 1 au as well as quantify the total unsigned open magnetic flux from these maps.more » « less
-
Abstract Forecasting the arrival time of Earth‐directed coronal mass ejections (CMEs) via physics‐based simulations is an essential but challenging task in space weather research due to the complexity of the underlying physics and limited remote and in situ observations of these events. Data assimilation techniques can assist in constraining free model parameters and reduce the uncertainty in subsequent model predictions. In this study, we show that CME simulations conducted with the Space Weather Modeling Framework (SWMF) can be assimilated with SOHO LASCO white‐light (WL) observations and solar wind observations at L1 prior to the CME eruption to improve the prediction of CME arrival time. The L1 observations are used to constrain the model of the solar wind background into which the CME is launched. Average speed of CME shock front over propagation angles are extracted from both synthetic WL images from the Alfvén Wave Solar atmosphere Model (AWSoM) and the WL observations. We observe a strong rank correlation between the average WL speed and CME arrival time, with the Spearman's rank correlation coefficients larger than 0.90 for three events occurring during different phases of the solar cycle. This enables us to develop a Bayesian framework to filter ensemble simulations using WL observations, which is found to reduce the mean absolute error of CME arrival time prediction from about 13.4 to 5.1 hr. The results show the potential of assimilating readily available L1 and WL observations within hours of the CME eruption to construct optimal ensembles of Sun‐to‐Earth CME simulations.more » « less
-
Abstract For the first time, we simulate the detailed spectral line emission from a solar active region (AR) with the Alfvén Wave Solar Model (AWSoM). We select an AR appearing near disk center on 2018 July 13 and use the National Solar Observatory’s Helioseismic and Magnetic Imager synoptic magnetogram to specify the magnetic field at the model’s inner boundary. To resolve small-scale magnetic features, we apply adaptive mesh refinement with a horizontal spatial resolution of 0°.35 (4.5 Mm), four times higher than the background corona. We then apply the SPECTRUM code, using CHIANTI spectral emissivities, to calculate spectral lines forming at temperatures ranging from 0.5 to 3 MK. Comparisons are made between the simulated line intensities and those observed by Hinode/Extreme-ultraviolet Imaging Spectrometer where we find close agreement across a wide range of loop sizes and temperatures (about 20% relative error for both the loop top and footpoints at a temperature of about 1.5 MK). We also simulate and compare Doppler velocities and find that simulated flow patterns are of comparable magnitude to what is observed. Our results demonstrate the broad applicability of the low-frequency AWSoM for explaining the heating of coronal loops.more » « less
An official website of the United States government
