skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mandin, Philippe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nucleate boiling is perhaps one of the most efficient cooling methodologies due to its large heat flux with a relatively low superheat. Nucleate boiling often occurs on surfaces oriented at different angles; therefore, understanding the behavior of bubble growth on various surface orientations is of importance. Despite significant advancement, numerous questions remain regarding the fundamentals of bubble growth mechanisms on oriented surfaces, a major source of enhanced heat dissipation. This work aims to accurately measure three-dimensional (3D), space- and time-resolved, local liquid temperature distributions surrounding a growing bubble on oriented surfaces that quantify the heat transfer from the superheated liquid layer during bubble growth. The dual tracer laser-induced fluorescence thermometry technique combined with high-speed imaging captures transient 2D temperature distributions within a 0.3 ºC accuracy at a 30 μm resolution. The results show that the temperature close to the heated surface and bubble interface exhibits an acute transient behavior at the time of bubble departure, and the growing bubble works as a pump to remove heat from the surface with a temperature difference of up to 10 °C during its growth and departure. The experimental results are compared with data available in the literature to validate the accuracy of the technique. It was found that the heat transfer coefficient close to the bubble interface and heater is approximately 1.3 times higher than the heat transfer coefficient in the bulk liquid. 
    more » « less
  2. With increasing energy demands and depleting oil accessibility in reservoirs, the investigation of more effective enhanced oil recovery (EOR) methods for deep and tight reservoirs is imminent. This study investigates a novel hybrid EOR method, a synergistic approach of nonionic surfactant flooding with intermediate CO2-based oil swelling. This study is focused on the efficiency of surfactant flooding and low-pressure oil swelling in oil recovery. We conducted a fluorescence-based microscopic analysis in a microchannel to explore the effect of sodium dodecyl sulfate (SDS) surfactant on CO2 diffusion in Texas crude oil. Based on the change in emission intensity of oil, the results revealed that SDS enhanced CO2 diffusion at low pressure in oil, primarily due to SDS aggregation and reduced interfacial tension at the CO2 gas–oil interface. To validate the feasibility of our proposed EOR method, we adopted a ‘reservoir-on-a-chip’ approach, incorporating flooding tests in a polymethylmethacrylate (PMMA)-based micromodel. We estimated the cumulative oil recovery by comparing the results of two-stage surfactant flooding with intermediate CO2 swelling at different pressures. This novel hybrid approach test consisted of a three-stage sequence: an initial flooding stage, followed by intermediate CO2 swelling, and a second flooding stage. The results revealed an increase in cumulative oil recovery by nearly 10% upon a 2% (w/v) solution of SDS and water flooding compared to just water flooding. The results showed the visual phenomenon of oil imbibition during the surfactant flooding process. This innovative approach holds immense potential for future EOR processes, characterized by its unique combination of surfactant flooding and CO2 swelling, yielding higher oil recovery. 
    more » « less