skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mandin, Philippe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nucleate boiling is perhaps one of the most efficient cooling methodologies due to its large heat flux with a relatively low superheat. Nucleate boiling often occurs on surfaces oriented at different angles; therefore, understanding the behavior of bubble growth on various surface orientations is of importance. Despite significant advancement, numerous questions remain regarding the fundamentals of bubble growth mechanisms on oriented surfaces, a major source of enhanced heat dissipation. This work aims to accurately measure three-dimensional (3D), space- and time-resolved, local liquid temperature distributions surrounding a growing bubble on oriented surfaces that quantify the heat transfer from the superheated liquid layer during bubble growth. The dual tracer laser-induced fluorescence thermometry technique combined with high-speed imaging captures transient 2D temperature distributions within a 0.3 ºC accuracy at a 30 μm resolution. The results show that the temperature close to the heated surface and bubble interface exhibits an acute transient behavior at the time of bubble departure, and the growing bubble works as a pump to remove heat from the surface with a temperature difference of up to 10 °C during its growth and departure. The experimental results are compared with data available in the literature to validate the accuracy of the technique. It was found that the heat transfer coefficient close to the bubble interface and heater is approximately 1.3 times higher than the heat transfer coefficient in the bulk liquid. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025