skip to main content


Search for: All records

Creators/Authors contains: "Mani, R. G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract A metallic state with a vanishing activation gap, at a filling factor $$\nu = 8/5$$ ν = 8 / 5 in the untilted specimen with $$n= 2 \times 10^{11} cm^{-2}$$ n = 2 × 10 11 c m - 2 , and at $$\nu = 4/3$$ ν = 4 / 3 at $$n=1.2 \times 10^{11} cm^{-2}$$ n = 1.2 × 10 11 c m - 2 under a $$\theta = 66^{0}$$ θ = 66 0 tilted magnetic field, is examined through a microwave photo-excited transport study of the GaAs/AlGaAs 2 dimensional electron system (2DES). The results presented here suggest, remarkably, that at the possible degeneracy point of states with different spin polarization, where the 8/5 or 4/3 FQHE vanish, there occurs a peculiar marginal metallic state that differs qualitatively from a quantum Hall insulating state and the usual quantum Hall metallic state. Such a marginal metallic state occurs most prominently at $$\nu =8/5$$ ν = 8 / 5 , and at $$\nu =4/3$$ ν = 4 / 3 under tilt as mentioned above, over the interval $$1 \le \nu \le 2$$ 1 ≤ ν ≤ 2 , that also includes the $$\nu = 3/2$$ ν = 3 / 2 state, which appears perceptibly gapped in the first instance. 
    more » « less
  2. Abstract

    We examine the characteristics of the microwave/mm-wave/terahertz radiation-induced magnetoresistance oscillations in monolayer and bilayer graphene and report that the oscillation frequency of the radiation-induced magnetoresistance oscillations in the massless, linearly dispersed monolayer graphene system should depend strongly both on the Fermi energy, and the radiation frequency, unlike in the case of the massive, parabolic, GaAs/AlGaAs 2D electron system, where the radiation-induced magnetoresistance oscillation frequency depends mainly on the radiation frequency. This possible dependence of the magnetoresistance oscillation frequency on the Fermi level at a fixed radiation frequency also suggests a sensitivity to the gate voltage in gated graphene, which suggests anin-situtunable photo-excitation response in monolayer graphene that could be useful for sensing applications. In sharp contrast to monolayer graphene, bilayer graphene is expected to show radiation-induced magnetoresistance oscillations more similar to the results observed in the GaAs/AlGaAs 2D system. Such expectations for the radiation-induced magnetoresistance oscillations are presented here to guide future experimental studies in both of these modern atomic layer material systems.

     
    more » « less
  3. ABSTRACT CVD graphene growth typically uses commercially available cold-rolled copper foils, which includes a rich topography with scratches, dents, pits, and peaks. The graphene grown on this topography, even after annealing the foil, tends to include and reflect these topographic features. Further, the transfer of such CVD graphene to a flat substrate using a polymer transfer method also introduces wrinkles. Here, we examine an electropolishing technique for reducing native foil defects, characterize the resulting foil surface, grow single-crystal graphene on the polished foil, and examine the quality of the graphene for such defects. 
    more » « less
  4. ABSTRACT We examined the influence of the microwave power on the diagonal resistance in the GaAs/AlGaAs two dimensional electron system (2DES), in order to extract the electron temperature and determine microwave induced heating as a function of the microwave power. The study shows that microwaves produce a small discernable increase in the electron temperature both at null magnetic field and at finite magnetic fields in the GaAs/AlGaAs 2DES. The heating effect at null field appears greater in comparison to the examined finite field interval, although the increase in the electron temperature in the zero-field limit appears smaller than theoretical predictions. 
    more » « less