- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
04000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Manjunatha, Varun (4)
-
Dernoncourt, Franck (2)
-
Iyyer, Mohit (2)
-
Nguyen, Thien Huu (2)
-
Pouran Ben Veyseh, Amir (2)
-
Boyd-Graber, Jordan (1)
-
Bui, Trung (1)
-
Chang, Walter W. (1)
-
Davis, Larry (1)
-
Deilamsalehy, Hanieh (1)
-
Iida, Hiroshi (1)
-
Jain, Rajiv (1)
-
Thai, Dung (1)
-
Tran, Quan (1)
-
Tran, Quan Hung (1)
-
Xu, Ning (1)
-
Yoon, Seunghyun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pouran Ben Veyseh, Amir ; Xu, Ning ; Tran, Quan ; Manjunatha, Varun ; Dernoncourt, Franck ; Nguyen, Thien Huu ( , Findings of the Association for Computational Linguistics: ACL 2022)
-
Iida, Hiroshi ; Thai, Dung ; Manjunatha, Varun ; Iyyer, Mohit ( , Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies)null (Ed.)Existing work on tabular representation-learning jointly models tables and associated text using self-supervised objective functions derived from pretrained language models such as BERT. While this joint pretraining improves tasks involving paired tables and text (e.g., answering questions about tables), we show that it underperforms on tasks that operate over tables without any associated text (e.g., populating missing cells). We devise a simple pretraining objective (corrupt cell detection) that learns exclusively from tabular data and reaches the state-of-the-art on a suite of table-based prediction tasks. Unlike competing approaches, our model (TABBIE) provides embeddings of all table substructures (cells, rows, and columns), and it also requires far less compute to train. A qualitative analysis of our model’s learned cell, column, and row representations shows that it understands complex table semantics and numerical trends.more » « less
-
Iyyer, Mohit ; Manjunatha, Varun ; Boyd-Graber, Jordan ; Davis, Larry ( , North American Association of Computational Linguistics)