Southern Ocean surface cooling and Antarctic sea ice expansion from 1979 through 2015 have been linked both to changing atmospheric circulation and melting of Antarctica's grounded ice and ice shelves. However, climate models have largely been unable to reproduce this behavior. Here we examine the contribution of observed wind variability and Antarctic meltwater to Southern Ocean sea surface temperature (SST) and Antarctic sea ice. The free‐running, CMIP6‐class GISS‐E2.1‐G climate model can simulate regional cooling and neutral sea ice trends due to internal variability, but they are unlikely. Constraining the model to observed winds and meltwater fluxes from 1990 through 2021 gives SST variability and trends consistent with observations. Meltwater and winds contribute a similar amount to the SST trend, and winds contribute more to the sea ice trend than meltwater. However, while the constrained model captures much of the observed sea ice variability, it only partially captures the post‐2015 sea ice reduction.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Mankoff, Kenneth_D (2)
-
Roach, Lettie_A (2)
-
Romanou, Anastasia (2)
-
Schmidt, Gavin_A (2)
-
Blanchard‐Wrigglesworth, Edward (1)
-
Busecke, Julius_J_M (1)
-
Haine, Thomas_W_N (1)
-
Kelley, Maxwell (1)
-
Li, Qian (1)
-
Marshall, John_C (1)
-
Rye, Craig_D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Schmidt, Gavin_A ; Romanou, Anastasia ; Roach, Lettie_A ; Mankoff, Kenneth_D ; Li, Qian ; Rye, Craig_D ; Kelley, Maxwell ; Marshall, John_C ; Busecke, Julius_J_M ( , Geophysical Research Letters)
Abstract Recent mass loss from ice sheets and ice shelves is now persistent and prolonged enough that it impacts downstream oceanographic conditions. To demonstrate this, we use an ensemble of coupled GISS‐E2.1‐G simulations forced with historical estimates of anomalous freshwater, in addition to other climate forcings, from 1990 through 2019. There are detectable differences in zonal‐mean sea surface temperatures (SST) and sea ice in the Southern Ocean, and in regional sea level around Antarctica and in the western North Atlantic. These impacts mostly improve the model's representation of historical changes, including reversing the forced trends in Antarctic sea ice. The changes in SST may have implications for estimates of the SST pattern effect on climate sensitivity and for cloud feedbacks. We conclude that the changes are sufficiently large that model groups should strive to include more accurate estimates of these drivers in all‐forcing historical simulations in future coupled model intercomparisons.