skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mansfield, Jennifer H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For neurula embryos of amphioxus (chordate subphylum Cephalochordata), the anterior region of the neural tube was studied with transmission electron microscopy. This survey demonstrated previously unreported cells, each characterized by a cilium bearing on its shaft a protruding lateral bubble packed with vesicles. Such cilia resemble those known from immature coronet cells in other chordates-namely, fishes in the Vertebrata and ascidians and appendicularians in the Tunicata. This wide occurrence of coronet-like cells raises questions about their possible homologies within the phylum Chordata. When considered at the level of the whole cell, such homology is not well supported. For example, the fish cells are generally thought to be glia, while the tunicate cells are considered to be neurons; moreover, cytoplasmic smooth endoplasmic reticulum, which is predominant in the former, is undetectable in the latter. In contrast, a more convincing case for homology can be made by limiting comparisons to the cell apices with their modified cilia. In addition to the fine-structural similarities between fishes and tunicates already mentioned, nonvisual opsins have been found associated with the vesicles in the modified cilia of both groups. Such opsins are thought to link photoreception to endocrine output controlling behavior. Further work would be needed to test the idea that the amphioxus diencephalic cells with lateral bubble cilia might similarly be opsin rich and could provide insights into the evolutionary history of the coronet cells within the phylum Chordata. 
    more » « less
  2. The skeletal system derives from multiple embryonic sources whose derivatives must develop in coordination to produce an integrated whole. In particular, interactions across the lateral somitic frontier, where derivatives of the somites and lateral plate mesoderm come into contact, are important for proper development. Many questions remain about genetic control of this coordination, and embryological information is incomplete for some structures that incorporate the frontier, including the sternum. Hox genes act in both tissues as regulators of skeletal pattern. Here, we used conditional deletion to characterize the tissue-specific contributions of Hoxa5 to skeletal patterning. We found that most aspects of the Hoxa5 skeletal phenotype are attributable to its activity in one or the other tissue, indicating largely additive roles. However, multiple roles are identified at the junction of the T1 ribs and the anterior portion of the sternum, or presternum. The embryology of the presternum has not been well described in mouse. We present a model for presternum development, and show that it arises from multiple, paired LPM-derived primordia. We show evidence that HOXA5 expression marks the embryonic precursor of a recently identified lateral presternum structure that is variably present in therians. 
    more » « less
  3. null (Ed.)
    Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood. Hoxa5 patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show that Hoxa5 also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5. Hoxa5 null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded in Hoxa5 mutants. Conditional deletion of Hoxa5 with Myf5/Cre can reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary within Myf5- positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows that Hoxa5 does not act cell-autonomously to repress skeletal muscle fate. Interestingly, Hoxa5 -dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role for Hoxa5 in multiple tissues. Together, these findings establish a role for Hoxa5 in embryonic BAT development. 
    more » « less