Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Grain boundary (GB) structural change is commonly observed during and after stress-driven GB migration in nanocrystalline materials, but its exact atomic scale transformation has not been explored experimentally. Here, using in situ high-resolution transmission electron microscopy combined with molecular dynamics simulations, we observed the dynamic GB structural transformation stemming from reversible facet transformation and GB dissociation during the shear-mediated migration of faceted GBs in gold nanocrystals. A reversible transformation was found to occur between (002)/(111) and Σ11(113) GB facets, accomplished by the coalescence and detachment of
-type GB steps or disconnections that mediated the GB migration. In comparison, the dissociation of (002)/(111) GB into Σ11(113) and Σ3(111) GBs occurred via the reaction of -type steps that involved the emission of partial dislocations. Furthermore, these transformations were loading dependent and could be accommodated by GB junctions. This work provides atomistic insights into the dynamic structural transformation during GB migration. -
Abstract Ultrahigh surface-to-volume ratio in nanoscale materials, could dramatically facilitate mass transport, leading to surface-mediated diffusion similar to Coble-type creep in polycrystalline materials. Unfortunately, the Coble creep is just a conceptual model, and the associated physical mechanisms of mass transport have never been revealed at atomic scale. Akin to the ambiguities in Coble creep, atomic surface diffusion in nanoscale crystals remains largely unclear, especially when mediating yielding and plastic flow. Here, by using in situ nanomechanical testing under high-resolution transmission electron microscope, we find that the diffusion-assisted dislocation nucleation induces the transition from a normal to an inverse Hall-Petch-like relation of the strength-size dependence and the surface-creep leads to the abnormal softening in flow stress with the reduction in size of nanoscale silver, contrary to the classical “alternating dislocation starvation” behavior in nanoscale platinum. This work provides insights into the atomic-scale mechanisms of diffusion-mediated deformation in nanoscale materials, and impact on the design for ultrasmall-sized nanomechanical devices.