skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maranca, Alessandra_Rister Portinari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Colijn and Plazzotta (2018) [1] described a bijective scheme for associating the unlabeled bifurcating rooted trees with the positive integers. In mathematical and biological applications of unlabeled rooted trees, however, nodes of rooted trees are sometimes multifurcating rather than bifurcating. Building on the bijection between the unlabeled bifurcating rooted trees and the positive integers, we describe bijective schemes for associating the unlabeled multifurcating rooted trees with the positive integers. We devise bijections with the positive integers for a set of trees in which each non-leaf node has exactly k child nodes, and for a set of trees in which each non-leaf node has at most k child nodes. The calculations make use of Macaulay's binomial expansion formula. The generalization to multifurcating trees can assist with the use of unlabeled trees for applications in evolutionary biology, such as the measurement of phylogenetic patterns of genetic lineages in pathogens. 
    more » « less