Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We propose to design and build an algorithm that will use a convolutional neural network (CNN) and observations from the Unistellar Network to reliably detect asteroid occultations. The Unistellar Network is made of more than 10,000 digital telescopes owned by citizen scientists, and is regularly used to record asteroid occultations. In order to process the increasing amount of observational produced by this network, we need a quick and reliable way to analyze occultations. In an effort to solve this problem, we trained a CNN with artificial images of stars with 20 different types of photometric signals. Inputs to the network consist of two stacks of snippet images of stars, one around the star that is supposed to be occulted and a reference star used for comparison. We need the reference star to distinguish between a true occultation and artifacts introduced by a poor atmospheric condition. Our Occultation Detection Neural Network can analyze three sequences of stars per second with 91% precision and 87% recall. The algorithm is sufficiently fast and robust so we can envision incorporating it on board the eVscopes to deliver real-time results. We conclude that citizen science represents an important opportunity for the future studies and discoveries in the occultations, and that application of artificial intelligence will permit us to to take better advantage of the ever-growing quantity of data to categorize asteroids.more » « less
-
Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method.more » « less