Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Extracellular vesicles (EVs) are released by all cell types into the extracellular environment. A subset of EVs, known as exosomes, range in size from 30 to 200 nm and are of biochemical interest due to their function as vehicles of intercellular communication. Their ability to transport proteinaceous species and genetic material at the cellular level makes them prime candidates as vectors in gene therapies. Focusing on biotherapeutics, bovine milk–derived extracellular vesicles (MDEVs) hold particular promise as an alternative to other exosome sources for therapeutics delivery. Bovine milk poses unique challenges due to the complex colloidal matrix, composed predominantly of fats and proteins like casein, which form micelles that exhibit exosome-like characteristics, specifically size and density. When faced with complex matrices like milk, conventional size/density-based isolation methods including ultracentrifugation and size exclusion chromatography struggle to provide high purity yields on practical time and cost scales. When paired with a stepwise hydrophobic interaction chromatography (HIC) gradient, polyester (PET) capillary-channeled polymer (C-CP) fibers in column and spin-down tips formats have been used effectively to isolate exosomes from highly diverse sources. Here, PET C-CP fiber columns are demonstrated to isolate MDEVs from pre-treated raw milk, yielding concentrations of 1.5 × 1010particles mL⁻1with purities of ~2 × 1010EVs µg−1protein in less than 20 min. The efficacy of the isolation process is verified by a suite of characterization methods. Implementing PET C-CP fiber columns for MDEV isolation addresses the challenges associated with conventional isolation methods, holding promise for scale-up towards therapeutic applications.more » « less
-
ABSTRACT Exosomes, a subset of extracellular vesicles (EVs) ranging in size from 30 to 150 nm, are of significant interest for biomedical applications such as diagnostic testing and therapeutics delivery. Biofluids, including urine, blood, and saliva, contain exosomes that carry biomarkers reflective of their host cells. However, isolation of EVs is often a challenge due to their size range, low density, and high hydrophobicity. Isolations can involve long separation times (ultracentrifugation) or result in impure eluates (size exclusion chromatography, polymer‐based precipitation). As an alternative to these methods, this study evaluates the first use of nylon‐6 capillary‐channeled polymer (C‐CP) fiber columns to separate EVs from human urine via a step‐gradient hydrophobic interaction chromatography method. Different from previous efforts using polyester fiber columns for EV separations, nylon‐6 shows potential for increased isolation efficiency, including somewhat higher column loading capacity and more gentle EV elution solvent strength. The efficacy of this approach to EV separation has been determined by scanning electron and transmission microscopy, nanoparticle flow cytometry (NanoFCM), and Bradford protein assays. Electron microscopy showed isolated vesicles of the expected morphology. Nanoparticle flow cytometry determined particle densities of eluates yielding up to 5 × 108particles mL−1, a typical distribution of vesicle sizes in the eluate (60–100 nm), and immunoconfirmation using fluorescent anti‐CD81 antibodies. Bradford assays confirmed that protein concentrations in the EV eluate were significantly reduced (approx. sevenfold) from raw urine. Overall, this approach provides a low‐cost and time‐efficient (< 20 min) column separation to yield urinary EVs of the high purities required for downstream applications, including diagnostic testing and therapeutics.more » « less
-
Abstract Extracellular vesicles (EVs) have garnered much interest due to their fundamental role in intracellular communication and their potential utility in clinical diagnostics and as biotherapeutic vectors. Of particular relevance is the subset of EVs referred to as exosomes, ranging in size from 30 to 150 nm, which contain incredible amounts of information about their cell of origin, which can be used to track the progress of disease. As a complementary action, exosomes can be engineered with therapeutic cargo to selectively target diseases. At present, the lack of highly efficient methods of isolation/purification of exosomes from diverse biofluids, plants, and cell cultures is a major bottleneck in the fundamental biochemistry, clinical analysis, and therapeutic applications. Equally impactful, the lack of effective in-line means of detection/characterization of isolate populations, including concentration and sizing, is limiting in the applications. The method presented here couples hydrophobic interaction chromatography (HIC) performed on polyester capillary-channeled polymer (C-CP) fiber columns followed by in-line optical absorbance and multi-angle light scattering (MALS) detection for the isolation and characterization of EVs, in this case present in the supernatant of Chinese hamster ovary (CHO) cell cultures. Excellent correlation was observed between the determined particle concentrations for the two detection methods. C-CP fiber columns provide a low-cost platform (< $5 per column) for the isolation of exosomes in a 15-min workflow, with complementary absorbance and MALS detection providing very high-quality particle concentration and sizing information.more » « less
-
Abstract Exosomes, a subset of extracellular vesicles (EVs, 30–200‐nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large‐scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low‐yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary‐channeled polymer fiber spin‐down tip format. EVs are isolated from the CCM of suspension‐adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid‐phase extraction technique allows 1012EVs to be obtained from only 100‐µl aliquots of milieu, processed using a benchtop centrifuge. The tip‐isolated EVs were characterized using transmission electron microscopy, multi‐angle light scattering, absorbance quantification, an enzyme‐linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production‐level scale‐up projected.more » « less
-
Abstract Cell culture media metal content is critical in mammalian cell growth and monoclonal antibody productivity. The variability in metal concentrations has multiple sources of origin. As such, there is a need to analyze media before, during, and after production. Furthermore, it is not the simple presence of a given metal that can impact processes, but also their chemical form that is, speciation. To a first approximation, it is instructive to simply and quickly ascertain if the metals exist as inorganic (free metal) ions or are part of an organometallic complex (ligated). Here we present a simple workflow involving the capture of ligated metals on a fiber stationary phase with passage of the free ions to an inductively coupled plasma optical emission spectrometry for quantification; the captured species are subsequently eluted for quantification. This first level of speciation (free vs. ligated) can be informative towards sources of contaminant metal species and means to assess bioreactor processes.more » « less
An official website of the United States government
