skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marelli, Benedetto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report and validate a new computational method to design tetrapeptides that assemble in response to pH stimuli to form beta-sheeted nanoassemblies and hydrogels. 
    more » « less
  2. Nanotubular structures possess remarkable advantages in a broad range of areas, such as catalysis, sensing, microencapsulation, selective mass transport, filtration, and drug delivery. While the fields of carbon nanotubes and nanotubes made of several noncarbon materials (e.g., metals, oxides, semiconductors) have been progressing rapidly, proteinaceous nanotubes remained largely underexplored. Here, by retrofitting a template wetting approach with multiple silk-based suspensions, we present a rapidly scalable and robust technology for fabricating large arrays (e.g., 20 × 20 cm2) of well-aligned 1D nanostructures made of silk proteins. Benefiting from the polymorphic nature of silk, precise control over the size, density, aspect ratio, and morphology (tubes versus pillars) of silk nanostructures is achieved, which then allows for programmable modulation of the end materials’ functions and properties (e.g., hydrophobicity, oleophilicity, and gas permeability). The silk nanotube arrays fabricated present great utility as antifouling coatings against marine algae and in oil extraction from oil–water mixtures. 
    more » « less
  3. PUF tags made from stochastic assembly of silk microparticles provide a unique solution for anticounterfeiting. 
    more » « less
  4. null (Ed.)
  5. Abstract Despite advances in directing the assembly of biomacromolecules into well-defined nanostructures, leveraging pathway complexity of molecular disorder to order transition while bridging materials fabrication from nano- to macroscale remains a challenge. Here, we present templated crystallization of structural proteins to nanofabricate hierarchically structured materials up to centimeter scale, using silk fibroin as an example. The process involves the use of ordered peptide supramolecular assemblies as templates to direct the folding and assembly of silk fibroin into nanofibrillar structures. Silk polymorphs can be engineered by varying the peptide seeds used. Modulation of the relative concentration between silk fibroin and peptide seeds, silk fibroin molecular weight and pH allows control over nanofibrils morphologies and mechanical properties. Finally, facile integration of the bottom-up templated crystallization with emerging top-down techniques enables the generation of macroscopic nanostructured materials with potential applications in information storage/encryption, surface functionalization, and printable three-dimensional constructs of customized architecture and controlled anisotropy. 
    more » « less