Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kim, Hongkyun (Ed.)The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here, we compare three different stimulation methods for eliciting activity-dependent changes in structure and function at the Drosophila NMJ. We find that the method using patterned stimulations driven by a K+-rich solution creates robust structural modifications but reduces muscle viability, as assessed by resting potential and membrane resistance. We argue that, using this method, electrophysiological studies that consider the frequency of events, rather than their amplitude, are the only reliable studies. We contrast these results with the expression of CsChrimson channels and red-light stimulation at the NMJ, as well as with the expression of TRPA channels and temperature stimulation. With both these methods we observed reliable modifications of synaptic structures and consistent changes in electrophysiological properties. Indeed, we observed a rapid appearance of immature boutons that lack postsynaptic differentiation, and a potentiation of spontaneous neurotransmission frequency. Surprisingly, a patterned application of temperature changes alone is sufficient to provoke both structural and functional plasticity. In this context, temperature-dependent TRPA channel activation induces additional structural plasticity but no further increase in the frequency of spontaneous neurotransmission, suggesting an uncoupling of these mechanisms.more » « less
-
Hull, J Joe (Ed.)The species Chironomus sp. “Florida” has several qualities that make it a potential aquatic laboratory model to be used in Puerto Rico. Its use as such, however, requires a rearing protocol and life cycle description not previously reported. The present study addresses this lack of information by first describing a rearing method obtained through three years of observations. Next we describe and discuss the life cycle and the effects of temperature and feeding on development. The species has a short life cycle (typically 11 days) and larval stages easily identified using body measurements. Temperature affects the duration of the life cycle, with warm temperatures producing faster development than cold temperatures. The effects of different food concentrations vary: in large water volumes, concentrations of 2 mg/larva/day produce faster developmental times, but at low water volumes, small food concentrations of 0.5 mg/larva/day produce faster developmental times. The rearing protocol and life cycle parameters presented in this study are intended to promote the use of this species as a laboratory model. The fast development of Chironomus sp. “Florida” makes it ideal for toxicological studies.more » « less
-
null (Ed.)The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Ca v 1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking in HCs was strongly perturbed suggesting a retrograde action of the endocannabinoid system (ECs) via cnr2 that was modulating HC mechanotransduction. We found similar perturbations in retinal ribbon synapses. Finally, we showed that larval swimming behaviors after sound and light stimulations were significantly different in mutant animals. Thus, we propose that cnr2 is critical for the processing of sensory information in the developing larva.more » « less
An official website of the United States government
