skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mark, H. F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seismic anisotropy produced by aligned olivine in oceanic lithosphere offers a window into mid‐ocean ridge (MOR) dynamics. Yet, interpreting anisotropy in the context of grain‐scale deformation processes and strain observed in laboratory experiments and natural olivine samples has proven challenging due to incomplete seismological constraints and length scale differences spanning orders of magnitude. To bridge this observational gap, we estimate an in situ elastic tensor for oceanic lithosphere using co‐located compressional‐ and shear‐wavespeed anisotropy observations at the NoMelt experiment located on ∼70 Ma seafloor. The elastic model for the upper 7 km of the mantle, NoMelt_SPani7, is characterized by a fast azimuth parallel to the fossil‐spreading direction, consistent with corner‐flow deformation fabric. We compare this model with a database of 123 petrofabrics from the literature to infer olivine crystallographic orientations and shear strain accumulated within the lithosphere. Direct comparison to olivine deformation experiments indicates strain accumulation of 250%–400% in the shallow mantle. We find evidence for D‐type olivine lattice‐preferred orientation (LPO) with fast [100] parallel to the shear direction and girdled [010] and [001] crystallographic axes perpendicular to shear. D‐type LPO implies similar amounts of slip on the (010)[100] and (001)[100] easy slip systems during MOR spreading; we hypothesize that grain‐boundary sliding during dislocation creep relaxes strain compatibility, allowing D‐type LPO to develop in the shallow lithosphere. Deformation dominated by dislocation‐accommodated grain‐boundary sliding (disGBS) has implications for in situ stress and grain size during MOR spreading and implies grain‐size dependent deformation, in contrast to pure dislocation creep.

     
    more » « less
  2. Abstract

    The relative motion of the lithosphere with respect to the asthenosphere implies the existence of a boundary zone that accommodates shear between the rigid plates and flowing mantle. This shear zone is typically referred to as the lithosphere‐asthenosphere boundary (LAB). The width of this zone and the mechanisms accommodating shear across it have important implications for coupling between mantle convection and surface plate motion. Seismic observations have provided evidence for several physical mechanisms that might help enable relative plate motion, but how these mechanisms each contribute to the overall accommodation of shear remains unclear. Here we present receiver function constraints on the discontinuity structure of the oceanic upper mantle at the NoMelt site in the central Pacific, where local constraints on shear velocity, anisotropy, conductivity, and attenuation down to ∼300 km depth provide a comprehensive picture of upper mantle structure. We image a seismic discontinuity with a Vsv decrease of 4.5% or more over a 0–20 km thick gradient layer centered at a depth of ∼65 km. We associate this feature with the Gutenberg discontinuity (G), and interpret our observation of G as resulting from strain localization across a dehydration boundary based on the good agreement between the discontinuity depth and that of the dry solidus. Transitions in Vsv, azimuthal anisotropy, conductivity, and attenuation observed at roughly similar depths suggest that the G discontinuity represents a region of localized strain within a broader zone accommodating shear between the lithosphere and asthenosphere.

     
    more » « less