skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Markley, John L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure–function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called “ssPINE”. The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form. 
    more » « less
  2. null (Ed.)
  3. Yann, Ponty (Ed.)
    Abstract Motivation Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. Availability and implementation CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. Supplementary information Supplementary data are available at Bioinformatics Online. 
    more » « less
  4. Abstract Motivation Two-dimensional [15N-1H] separated local field solid-state nuclear magnetic resonance (NMR) experiments of membrane proteins aligned in lipid bilayers provide tilt and rotation angles for α-helical segments using Polar Index Slant Angle (PISA)-wheel models. No integrated software has been made available for data analysis and visualization. Results We have developed the PISA-SPARKY plugin to seamlessly integrate PISA-wheel modeling into the NMRFAM-SPARKY platform. The plugin performs basic simulations, exhaustive fitting against experimental spectra, error analysis and dipolar and chemical shift wave plotting. The plugin also supports PyMOL integration and handling of parameters that describe variable alignment and dynamic scaling encountered with magnetically aligned media, ensuring optimal fitting and generation of restraints for structure calculation. Availability and implementation PISA-SPARKY is freely available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers of the SBGrid (https://sbgrid.org). The pisa.py script is available and documented on GitHub (https://github.com/weberdak/pisa.py) along with a tutorial video and sample data. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract We report the recombinant preparation fromEscherichia colicells of samples of two closely related, small, secreted cysteine‐rich plant peptides: rapid alkalinization factor 1 (RALF1) and rapid alkalinization factor 8 (RALF8). Purified samples of the native sequence of RALF8 exhibited well‐resolved nuclear magnetic resonance (NMR) spectra and also biological activity through interaction with a plant receptor kinase, cytoplasmic calcium mobilization, andin vivoroot growth suppression. By contrast, RALF1 could only be isolated from inclusion bodies as a construct containing an N‐terminal His‐tag; its poorly resolved NMR spectrum was indicative of aggregation. We prepared samples of the RALF8 peptide labeled with15N and13C for NMR analysis and obtained near complete1H,13C, and15N NMR assignments; determined the disulfide pairing of its four cysteine residues; and examined its solution structure. RALF8 is mostly disordered except for the two loops spanned by each of its two disulfide bridges. 
    more » « less