skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marois, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ruane, Garreth J (Ed.)
  2. Ruane, Garreth J (Ed.)
  3. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
  4. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
  5. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
  6. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
  7. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
  8. Abstract The unprecedented medium-resolution (Rλ∼ 1500–3500) near- and mid-infrared (1–18μm) spectrum provided by JWST for the young (140 ± 20 Myr) low-mass (12–20MJup) L–T transition (L7) companion VHS 1256 b gives access to a catalog of molecular absorptions. In this study, we present a comprehensive analysis of this data set utilizing a forward-modeling approach applying our Bayesian framework,ForMoSA. We explore five distinct atmospheric models to assess their performance in estimating key atmospheric parameters:Teff, log(g), [M/H], C/O,γ,fsed, andR. Our findings reveal that each parameter’s estimate is significantly influenced by factors such as the wavelength range considered and the model chosen for the fit. This is attributed to systematic errors in the models and their challenges in accurately replicating the complex atmospheric structure of VHS 1256 b, notably the complexity of its clouds and dust distribution. To propagate the impact of these systematic uncertainties on our atmospheric property estimates, we introduce innovative fitting methodologies based on independent fits performed on different spectral windows. We finally derived aTeffconsistent with the spectral type of the target, considering its young age, which is confirmed by our estimate of log(g). Despite the exceptional data quality, attaining robust estimates for chemical abundances [M/H] and C/O, often employed as indicators of formation history, remains challenging. Nevertheless, the pioneering case of JWST’s data for VHS 1256 b has paved the way for future acquisitions of substellar spectra that will be systematically analyzed to directly compare the properties of these objects and correct the systematics in the models. 
    more » « less
  9. Abstract We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same data set to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration NIRISS F380M AMI can reach contrast levels of ∼9–10 mag at ≳λ/D. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower-mass exoplanets than lower-contrast ground-based AMI setups, at orbital separations inaccessible to JWST coronagraphy. 
    more » « less
  10. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)