skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marounina, Nadejda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract It remains to be ascertained whether sub-Neptune exoplanets primarily possess hydrogen-rich atmospheres or whether a population of H2O-rich water worlds lurks in their midst. Addressing this question requires improved modeling of water-rich exoplanetary atmospheres, both to predict and interpret spectroscopic observations and to serve as upper boundary conditions on interior structure calculations. Here, we present new models of hydrogen-helium-water atmospheres with water abundances ranging from solar to 100% water vapor. We improve upon previous models of high-water-content atmospheres by incorporating updated prescriptions for water self-broadening and a nonideal gas equation of state. Our model grid (https://umd.box.com/v/water-worlds) includes temperature–pressure profiles in radiative-convective equilibrium, along with their associated transmission and thermal emission spectra. We find that our model updates primarily act at high pressures, significantly impacting bottom-of-atmosphere temperatures, with implications for the accuracy of interior structure calculations. Upper-atmosphere conditions and spectroscopic observables are less impacted by our model updates, and we find that, under most conditions, retrieval codes built for hot Jupiters should also perform well on water-rich planets. We additionally quantify the observational degeneracies among both thermal emission and transmission spectra. We recover standard degeneracies with clouds and mean molecular weight for transmission spectra, and we find thermal emission spectra to be more readily distinguishable from one another in the water-poor (i.e., near-solar) regime. 
    more » « less