skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maroutian, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates ultrafast photoinduced changes in optical properties of ferroelectrics (PZT) on femtosecond to nanosecond timescales, using broadband transient reflectivity studies. Surprisingly, spectral features were observed below the bandgap, which could not be attributed to ground state bleaching, excited state absorption, and/or stimulated emission. A model based on probe energy independent changes in refractive index and extinction coefficient showed good agreement with experimental results. Three relaxation processes were phenomenologically considered for the temporal evolution. Laser-induced heating was ruled out as the cause of short timescale behavior and photorefractive effect was suggested as a potential mechanism for changes in the optical properties. Graphical abstract 
    more » « less
  2. null (Ed.)
    Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k -means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr 0.2 Ti 0.8 O 3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Å was also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample. 
    more » « less