skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marques-Chaves, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at z = 6.5 0 0.24 + 0.03 , a moderately lensed galaxy ( μ = 2 . 9 0.2 + 0.1 ) with an intrinsic UV magnitude of M UV = 15.8 9 0.14 + 0.12 . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Context.Sources that leak Lyman continuum (LyC) photons and lead to the reionisation of the universe are an object of intense study using multiple observing facilities. Recently, the Low-redshift LyC Survey (LzLCS) has presented the first large sample of LyC emitting galaxies at low redshift (z ∼ 0.3) with theHubbleSpace Telescope Cosmic Origins Spectrograph. The LzLCS sample contains a robust estimate of the LyC escape fraction (fescLyC) for 66 galaxies, spanning a wide range offescLyCvalues. Aims.Here, we aim to study the dependence offescLyCon the radio continuum (RC) properties of LzLCS sources. Overall, RC emission can provide unique insights into the role of supernova feedback, cosmic rays (CRs), and magnetic fields from its non-thermal emission component. RC emission is also a dust-free tracer of the star formation rate (SFR) in galaxies. Methods.In this study, we present Karl G. Jansky Very Large Array (VLA) RC observations of the LzLCS sources at gigahertz (GHz) frequencies. We performed VLAC(4−8 GHz) andS(2−4 GHz) band observations for a sample of 53 LzLCS sources. We also observed a sub-sample of 17 LzLCS sources in theL(1−2 GHz) band. We detected RC from bothC- andS-bands in 24 sources for which we are able to estimate their radio spectral index across 3−6 GHz, denoted asα6 GHz3 GHz. We also used the RC luminosity to estimate their SFRs. Results.The radio spectral index of LzLCS sources spans a wide range, from flat (≥ − 0.1) to very steep (≤ − 1.0). They have a steeper meanα6 GHz3 GHz(≈ − 0.92) compared to that expected for normal star-forming galaxies (α6 GHz3 GHz ≈ −0.64). They also show a larger scatter inα6 GHz3 GHz(∼0.71) compared to that of normal star-forming galaxies (∼0.15). The strongest leakers in our sample show flatα6 GHz3 GHz, weak leakers haveα6 GHz3 GHzclose to normal star-forming galaxies and non-leakers are characterized by steepα6 GHz3 GHz. We argue that a combination of young ages, free-free absorption, and a flat cosmic-ray energy spectrum can altogether lead to a flatα6 GHz3 GHzfor strong leakers. Non-leakers are characterized by steep spectra which can arise due to break or cutoff at high frequencies. Such a cutoff in the spectrum can arise in a single injection model of CRs characteristic of galaxies which have recently stopped star-formation. The dependence offescLyConα6 GHz3 GHz(which is orientation-independent) suggests that the escape of LyC photons is not highly direction-dependent at least to the first order. The radio-based SFRs (SFRRC) of LzLCS sources show a large offset (∼0.59 dex) from the standard SFRRCcalibration. We find that addingα6 GHz3 GHzas a second parameter helps us to calibrate the SFRRCwith SFRUVand SFRwithin a scatter of ∼0.21 dex. Conclusions.For the first time, we have found a relation betweenα6 GHz3 GHzandfescLyC. This hints at the interesting role of supernovae feedback, CRs, and magnetic fields in facilitating the escape (alternatively, and/or the lack) of LyC photons. 
    more » « less