skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marrone, Daniel P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present Atacama Compact Array (ACA) Band-3 observations of the protocluster SPT2349−56, an extreme system hosting >10 ultraluminous infrared galaxies (ULIRGs;LIR ≳  1012L) in a 200 kpc diameter region atz =  4.3, to study its integrated molecular gas content via CO(4–3) and the long-wavelength dust continuum. The ∼30 hr integration represents one of the longest exposures yet taken on a single pointing with the ACA 7 m. The low-resolution ACA data (21 . 0  ×  12 . 2) reveal a 75% excess CO(4–3) flux compared to the sum of individual sources detected in higher-resolution Atacama Large Millimeter/submillimeter Array (ALMA) data (1 . 0  ×  0 . 8). Our work also reveals a similar result by tapering the ALMA data to 10″. In contrast, the 3.2 mm dust continuum shows little discrepancy between ACA and ALMA. A single-dish [Cii] spectrum obtained by APEX/FLASH supports the ACA CO(4–3) result, revealing a large excess in [Cii] emission relative to ALMA. The missing flux is unlikely due to undetected faint sources but instead suggests that high-resolution ALMA observations might miss extended and low-surface-brightness gas. Such emission could originate from the circumgalactic medium or the preheated protointracluster medium (proto-ICM). If this molecular gas reservoir replenishes the star formation fuel, the overall depletion timescale will exceed 400 Myr, reducing the requirement for the simultaneous ULIRG activity in SPT2349−56. Our results highlight the role of an extended gas reservoir in sustaining a high star formation rate in SPT2349−56 and potentially establishing the ICM during the transition phase to a mature cluster. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  2. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
  3. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
  4. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
  5. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
  6. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
  7. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)