skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marsden, Alison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2025
  2. Abstract We propose svMorph, a framework for interactive virtual sculpting of patient-specific vascular anatomic models. Our framework includes three tools for the creation of tortuosity, aneurysms, and stenoses in tubular vascular geometries. These shape edits are performed via geometric operations on the surface mesh and vessel centerline curves of the input model. The tortuosity tool also uses the physics-based Oriented Particles method, coupled with linear blend skinning, to achieve smooth, elastic-like deformations. Our tools can be applied separately or in combination to produce simulation-suitable morphed models. They are also compatible with popular vascular modeling software, such as SimVascular. To illustrate our tools, we morph several image-based, patient-specific models to create a range of shape changes and simulate the resulting hemodynamics via three-dimensional, computational fluid dynamics. We also demonstrate the ability to quickly estimate the hemodynamic effects of the shape changes via automated generation of associated zero-dimensional lumped-parameter models. 
    more » « less