Gut symbionts influence the physiology and behavior of their host, but the extent to which these effects scale to social behaviors is an emerging area of research. The use of the western honeybee (Apis mellifera) as a model enables researchers to investigate the gut microbiome and behavior at several levels of social organization. Insight into gut microbial effects at the societal level is critical for our understanding of how involved microbial symbionts are in host biology. In this Commentary, we discuss recent findings in honeybee gut microbiome research and synthesize these with knowledge of the physiology and behavior of other model organisms to hypothesize how host–microbe interactions at the individual level could shape societal dynamics and evolution.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Free, publicly-accessible full text available February 1, 2025 -
ABSTRACT Most ultra-hot Jupiters (UHJs) show evidence of temperature inversions, in which temperature increases with altitude over a range of pressures. Temperature inversions can occur when there is a species that absorbs the stellar irradiation at a relatively high level of the atmospheres. However, the species responsible for this absorption remains unidentified. In particular, the UHJ KELT-20b is known to have a temperature inversion. Using high resolution emission spectroscopy from LBT/PEPSI we investigate the atomic and molecular opacity sources that may cause the inversion in KELT-20b, as well as explore its atmospheric chemistry. We confirm the presence of Fe i with a significance of 17σ. We also report a tentative 4.3σ detection of Ni i. A nominally 4.5σ detection of Mg i emission in the PEPSI blue arm is likely in fact due to aliasing between the Mg i cross-correlation template and the Fe i lines present in the spectrum. We cannot reproduce a recent detection of Cr i, while we do not have the wavelength coverage to robustly test past detections of Fe ii and Si i. Together with non-detections of molecular species like TiO, this suggests that Fe i is likely to be the dominant optical opacity source in the dayside atmosphere of KELT-20b and may be responsible for the temperature inversion. We explore ways to reconcile the differences between our results and those in literature and point to future paths to understand atmospheric variability.
Free, publicly-accessible full text available November 27, 2024 -
Free, publicly-accessible full text available November 1, 2024
-
We report the discovery of TOI-4641b, a warm Jupiter transiting a rapidly rotating F-type star with a stellar effective temperature of 6560 K. The planet has a radius of 0.73 RJup, a mass smaller than 3.87 MJup(3σ), and a period of 22.09 d. It is orbiting a bright star (V=7.5 mag) on a circular orbit with a radius and mass of 1.73 R⊙ and 1.41 M⊙. Follow-up ground-based photometry was obtained using the Tierras Observatory. Two transits were also observed with the Tillinghast Reflector Echelle Spectrograph, revealing the star to have a low projected spin-orbit angle (λ=$1.41^{+0.76}_{-0.76}$°). Such obliquity measurements for stars with warm Jupiters are relatively few, and may shed light on the formation of warm Jupiters. Among the known planets orbiting hot and rapidly rotating stars, TOI-4641b is one of the longest period planets to be thoroughly characterized. Unlike hot Jupiters around hot stars which are more often misaligned, the warm Jupiter TOI-4641b is found in a well-aligned orbit. Future exploration of this parameter space can add one more dimension to the star–planet orbital obliquity distribution that has been well sampled for hot Jupiters.more » « lessFree, publicly-accessible full text available December 23, 2024
-
Abstract We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of
K, V magnitude of 10.51 mag and log(g ) of . The brown dwarf has a mass ofM J, a period of 4.034 days, an eccentricity of , and a radius ofR J. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models. -
Abstract Recent observations have shown that the atmospheres of ultrahot Jupiters (UHJs) commonly possess temperature inversions, where the temperature increases with increasing altitude. Nonetheless, which opacity sources are responsible for the presence of these inversions remains largely observationally unconstrained. We used LBT/PEPSI to observe the atmosphere of the UHJ KELT-20 b in both transmission and emission in order to search for molecular agents which could be responsible for the temperature inversion. We validate our methodology by confirming a previous detection of Fe
i in emission at 16.9σ . Our search for the inversion agents TiO, VO, FeH, and CaH results in non-detections. Using injection-recovery testing we set 4σ upper limits upon the volume mixing ratios for these constituents as low as ∼1 × 10−9for TiO. For TiO, VO, and CaH, our limits are much lower than expectations from an equilibrium chemical model, while we cannot set constraining limits on FeH with our data. We thus rule out TiO and CaH as the source of the temperature inversion in KELT-20 b, and VO only if the line lists are sufficiently accurate. -
ABSTRACT Massive stars are crucial to galactic chemical evolution for elements heavier than iron. Their contribution at early times in the evolution of the Universe, however, is unclear due to poorly constrained nuclear reaction rates. The competing 17O(α, γ)21Ne and 17O(α, n)20Ne reactions strongly impact weak s-process yields from rotating massive stars at low metallicities. Abundant 16O absorbs neutrons, removing flux from the s-process, and producing 17O. The 17O(α, n)20Ne reaction releases neutrons, allowing continued s-process nucleosynthesis, if the 17O(α, γ)21Ne reaction is sufficiently weak. While published rates are available, they are based on limited indirect experimental data for the relevant temperatures and, more importantly, no uncertainties are provided. The available nuclear physics has been evaluated, and combined with data from a new study of astrophysically relevant 21Ne states using the 20Ne(d, p)21Ne reaction. Constraints are placed on the ratio of the (α, n)/(α, γ) reaction rates with uncertainties on the rates provided for the first time. The new rates favour the (α, n) reaction and suggest that the weak s-process in rotating low-metallicity stars is likely to continue up to barium and, within the computed uncertainties, even to lead.more » « less
-
Abstract JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature
T eqand planetary radiusR pand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Free, publicly-accessible full text available April 23, 2025 -
Abstract The alignment of planetary orbits with respect to the stellar rotation preserves information on their dynamical histories. Measuring this angle for young planets helps illuminate the mechanisms that create misaligned orbits for older planets, as different processes could operate over timescales ranging from a few megayears to a gigayear. We present spectroscopic transit observations of the young exoplanet V1298 Tau b; we update the age of V1298 Tau to be 28 ± 4 Myr based on Gaia EDR3 measurements. We observed a partial transit with Keck/HIRES and LBT/PEPSI, and detected the radial velocity anomaly due to the Rossiter–McLaughlin effect. V1298 Tau b has a prograde, well-aligned orbit, with
deg. By combining the spectroscopically measured and the photometrically measured rotation period of the host star we also find that the orbit is aligned in 3D, deg. Finally, we combine our obliquity constraints with a previous measurement for the interior planet V1298 Tau c to constrain the mutual inclination between the two planets to bei mut= 0° ± 19°. This measurements adds to the growing number of well-aligned planets at young ages, hinting that misalignments may be generated over timescales of longer than tens of megayears. The number of measurements, however, is still small, and this population may not be representative of the older planets that have been observed to date. We also present the derivation of the relationship betweeni mut,λ , andi for the two planets.