skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martell, Luis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Fjords provide valuable research opportunities for marine scientists. They are excellent natural infrastructure for climate impact studies associated with hypoxic episodes and consequences for mesopelagic and deep‐sea ecosystems involving oceanographic circulation processes and basin water renewals. Repeated sampling from the same populations is possible, making fjords excellent systems for developing time series of data for climate impact studies. We provide an overview of the 14 years of data from Norwegian West Coast fjords, focusing on Masfjorden, and report major findings from Oslofjorden in Eastern Norway, exhibiting recurrent hypoxia in the basin waters. We document that the oxygen levels in Masfjorden decreased rapidly by over 60% at 450 m depth in < 8 years, which is much faster than the average rate of deoxygenation in the global ocean. We also discuss the increase in the deep‐sea and low‐light‐adapted coronate jellyfishPeriphylla periphyllain view of altered optical conditions of the basin water potentially related to deoxygenation. We argue that fjords like Masfjorden and Oslofjorden are not only macrocosms for ecological processes but also are likely an accelerated version of deep oceans with respect to climate impacts. 
    more » « less
    Free, publicly-accessible full text available January 4, 2026
  2. Abstract Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change. 
    more » « less