skip to main content

Search for: All records

Creators/Authors contains: "Martin, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 10, 2023
  2. Free, publicly-accessible full text available February 1, 2023
  3. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coatingmore »on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.« less
    Free, publicly-accessible full text available November 1, 2022
  4. Free, publicly-accessible full text available January 1, 2023
  5. ABSTRACT We present the results from an analysis of deep Herschel far-infrared (far-IR) observations of the edge-on disc galaxy NGC 3079. The point spread function-cleaned Photodetector Array Camera and Spectrometer (PACS) images at 100 and 160 µm display a 25 × 25 kpc2 X-shape structure centred on the nucleus that is similar in extent and orientation to that seen in H α, X-rays, and the far-ultraviolet. One of the dusty filaments making up this structure is detected in the Spectral and Photometric Imaging Receiver 250 µm map out to ∼25 kpc from the nucleus. The match between the far-IR filaments and those detected at other wavelengths suggestsmore »that the dusty material has been lifted out of the disc by the same large-scale galactic wind that has produced the other structures in this object. A closer look at the central 10 × 10 kpc2 region provides additional support for this scenario. The dust temperatures traced by the 100–160 µm flux ratios in this region are enhanced within a biconical region centred on the active galactic nucleus, aligned along the minor axis of the galaxy, and coincident with the well-known double-lobed cm-wave radio structure and H α–X-ray nuclear superbubbles. PACS imaging spectroscopy of the inner 6 kpc region reveals broad [C ii] 158 µm emission line profiles and OH 79 µm absorption features along the minor axis of the galaxy with widths well in excess of those expected from beam smearing of the disc rotational motion. This provides compelling evidence that the cool material traced by the [C ii] and OH features directly interacts with the nuclear ionized and relativistic outflows traced by the H α, X-ray, and radio emission.« less
    Free, publicly-accessible full text available October 26, 2022
  6. We study the following problem, which to our knowledge has been addressed only partially in the literature and not in full generality. An agent observes two players play a zero-sum game that is known to the players but not the agent. The agent observes the actions and state transitions of their game play, but not rewards. The players may play either op-timally (according to some Nash equilibrium) or according to any other solution concept, such as a quantal response equilibrium. Following these observations, the agent must recommend a policy for one player, say Player 1. The goal is to recommendmore »a policy that is minimally exploitable un-der the true, but unknown, game. We take a Bayesian ap-proach. We establish a likelihood function based on obser-vations and the specified solution concept. We then propose an approach based on Markov chain Monte Carlo (MCMC), which allows us to approximately sample games from the agent’s posterior belief distribution. Once we have a batch of independent samples from the posterior, we use linear pro-gramming and backward induction to compute a policy for Player 1 that minimizes the sum of exploitabilities over these games. This approximates the policy that minimizes the ex-pected exploitability under the full distribution. Our approach is also capable of handling counterfactuals, where known modifications are applied to the unknown game. We show that our Bayesian MCMC-based technique outperforms two other techniques—one based on the equilibrium policy of the maximum-probability game and the other based on imitation of observed behavior—on all the tested stochastic game envi-ronments.« less